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PREFACE

This text presents biology as an autonomous science from the perspective of fundamental modeling
techniques. It is designed as a desk reference for practitioners of diverse fields of life sciences, as
well as for these intellectually mature individuals who would, themselves, like to practice the art
of systems biology in the future. 

Albeit systems biology exists for well over two millennia, it has enjoyed a spectacular rejuve-
nation in the recent years. The computer has indeed been a major tool for systems scientists,
including systems biologists, since at least the 1960s. This is probably a reason why most conceptual
foundations of today’s systems biology appear to be expressed with the help of terminology
borrowed from logic (Chapters 1, 7, and 8), linguistic (Chapters 1, 7, and 8), theory of knowledge
(Chapters 1, 2, 4, 5, 7, and 8), computer science (Chapter 1, 2, and 8), general systems theory
(Chapters 1, 6, and 7), and dynamical systems (Chapters 2, 3, 5, 6, and 9). Because of the diversity
of flavors of possible applications, the general modeling methods are presented from several
different perspectives such as for instance biochemistry (Chapter 2), thermodynamics (Chapters 3
and 9), engineering (Chapters 7 and 8), and ecology (Chapter 5). 

Each chapter has been carefully reviewed and edited such that it will most likely provide the
reader with a factually and methodologically rigorous state-of-the-art tutorial, survey, and review
of modeling convoluted (complex) organic systems. Of course it would be naïve to guarantee that
all mistakes or misstatements are eliminated by the editing (most probably are). If any errors are
left, I will certainly feel responsible for them and therefore I would greatly appreciate it if the
readers could point them out to me by writing an e-mail or a “snail” mail. 

At this point, I would like to extend my most sincere thanks to Jean-Loup Risler (University
of Evry) and Laurie F. Fleischman (BioLingua™ Research, Inc.) for multiple reading, reviewing,
and help with editing the scientific content of the chapters of this handbook. The task of meritori-
ously revising the final drafts of this book would have simply been impossible without their selfless
contribution. I would also like to thank our outstanding acquisition editor Anita Lekhwani who not
only initiated this project but also relentlessly motivated it until its fruition, with her enthusiasm
and spectacular resolve. Finally, I also owe thanks to my organization, BioLinguaTM Research, Inc.,
and its board of directors for their enthusiastic support of my involvement in this project, as well
as for releasing me from the fund-raising duties and teaching assignments during almost the whole
of 2005.

Andrzej K. Konopka
Gaithersburg, MD
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1.1 INTRODUCTION

 

Systems Biology

 

 is a well-established area of human activity that can be traced back at least to the
writings of 

 

Aristotle

 

 around 350 B.C. [1]. The term “system” signifies here an entity that represents
wholeness, which can be superficially divided (fractioned) into components (parts) but whose
pivotal properties cannot be fully explained solely from the knowledge of the parts. The paradigms
of life sciences were changing with time but the core fundamental concepts of systems biology are
apparently resistant to these changes and remain pretty much the same today as they were in the
time of Aristotle. That is particularly true of the holistic Aristotelian notion of the system as a
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functionally robust but otherwise complex whole. It also remains true of other basic methods and
concepts of life sciences (such as, for instance, embryogenesis) described in Aristotle’s work [1].* 

I should mention here that because of 

 

semantic

 

 and 

 

pragmatic

 

 ambiguity of the popular credo
of scientific holism [3,4], “system is more than a sum of its parts,” one can distinguish several
coexisting paradigms of systems biology that generate different shades of meanings of words
“system,” “more,” “sum,” and “parts.” In contrast to physics-related research programs, there does
not need to be a “winning paradigm” in biology. Several different schools of thoughts, methodol-
ogies, and belief systems can easily coexist in 

 

life sciences 

 

and it is reportedly a rare event that
one well-formulated paradigm would prevail (i.e., “win”) over the others [4]. 

Despite an impressive, time-resistant success of the foundations of biology as an autonomous
science, today’s academic methodologies of science clearly pertain to mechanics and arguably to
a few other branches of physics while completely neglecting the cultures of chemistry [5] and,
even more so, of biology [4–8]. As a consequence, it has been erroneously assumed by many that
by setting appropriate habits of experimentation and theorizing (external controls), it must be always
possible to eliminate the influence of the observer’s mind (internal controls) on scientific observa-
tions in every imaginable field of science, not only mechanics. In reality, this assumption has been
only partly effective even in physics proper and, without a doubt, research in biology and chemistry
continues to rely not only on external but also on internal controls at the researcher’s disposal. It
is fair to say that the more convoluted (complex) a material system is the more important the
properties (activities) of its observers (modelers) appear to be. 

Within similar lines I wrote in another text a few years ago [9]:

 

… As most of us know, heuristic reasoning can be conclusive. Yet biologists face the problem of not
being able to specify all the rules applied to derive conclusions. Nor are they able to list all assumptions
on which those rules ought to operate. It seems that these inabilities are a reflection of the complexity
of biological systems themselves. Biological phenomena are often represented by models that are still
too complex to be described in a communicable manner. Further and further modeling is required until
our observations can be communicated in a linguistically comprehensive way. The cascade of models
gives us the advantage of creating “communicable reality” but does not help us to judge the evidence
pertinent to “real” (i.e., not necessarily communicable) reality.

 

 To the contrary, the more advanced a
model in a cascade is, the further is its “distance” (in terms of number of modeling steps) from the
modeled system ….

 

We could perhaps add that because of the extraordinary complexity of living things and because
of biologists’ dependence on natural language, biology has been considered a “descriptive” science
for centuries. It has therefore not been unusual for biologists to believe that the actions of observers
are as important for the outcomes and interpretations of findings as the actual observations are
assumed to be. An additional reason for the scientific merit of taking into account an observer is
the fact that our human means of observation (such as senses) do not need to be appropriate for
even detecting, not to mention their modeling, the complex natural phenomena we would be

 

* Most of Aristotelian foundations of modern biology are described in his work entitled 

 

Physics

 

. It is therefore relevant to
notice that what Aristotle called “Physics” should not be confused with today’s name of the science called physics. For
one thing, Aristotle’s attempts to study physical and astronomical phenomena have reportedly been quite lousy and have
long been forgotten. In contrast to that, his work on foundations of biology continues to inspire generations after generations
of biologists ever since his written testimonials have been known. In the absence of better terminology, Aristotle called
“Physics” all kinds of studies of Nature; particularly living things such as plants and animals that today would belong to
biology. Incidentally, it is believed that the term “biology” did not exist until Jean-Baptiste Pierre Antoine de Monet,
Chevalier de Lamarck (known to most of us as Lamarck) mentioned it for the first time in his famous introduction to his
“Philosophie Zoologique” published in 1809 [2]. Since this first published mention of the word 

 

biology 

 

refers to a title of
an unfinished manuscript that Lamarck begun writing between 1800 and 1801, it is believed that he invented the term

 

biology

 

 around 1800. (Some other accounts credit Lamarck and Treviranus for independently coining the term 

 

biology

 

 in
1802). Anyway, Aristotle could not possibly be aware of the work undertaken 2200+ years after his death and therefore he
included today’s biology in his “Physics.”
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potentially interested in observing if we were able to. In this situation we rely on models that
(again) may be very distant from the actual natural objects, phenomena, and processes we should
be observing. This in turn brings us to yet another good reason for taking into account an observer:
the attributes of models we are capable of observing may or may not be adequate to the actual
natural systems we should be observing. 

It follows from the foregoing comments that, in an abstract characterization, systems biology
can be seen as studies of properties of pairs, each consisting of an 

 

observer

 

 and a subject of
observation (an 

 

observed

 

) [10].

 

1.2 GENERAL SYSTEMS THEORY

 

General systems theory 

 

[11–13] (whose variants are also known under the names of 

 

cybernetics,
systems research, or systems thinking

 

) is an academic culture that promotes the 

 

functional organi-
zation 

 

as a primary concept instrumental for systems definition and description. In most general
settings, it is based on the assumptions that:

1. Systems behavior (functioning) as a whole is governed by general rules (or laws).
2. The rules do not need to be expressed in terms of properties of the components (parts)

of the system and ideally would not have much 

 

relevance

 

 to the laws followed by the
parts.

Traditionally, the general systems theory has been known in four complementary practical
incarnations (paradigms) [10] that explored different ways of overcoming misgivings of reductionist
methodologies (see section 1.4 of this chapter), as well as approaching a working definition of
complexity:

1. Chaos theory [14]
2. Cellular automata [15]
3. Catastrophe theory [16]
4. Hierarchical systems [17]

The first three of the foregoing incarnations of general systems theory (chaos, cellular automata,
and catastrophes) are all variants of dynamic systems, each of which in turn can be represented by
a finite set of differential equations. The fourth incarnation of systems biology paradigms, hier-
archical systems, appears to constitute a focal point of methodology. On the one hand the postulate
of existence of hierarchical systems and the concept of hierarchy constitute a condition of clear
thinking (condition 3 in section 1.2.1) while, on the other hand, the hierarchical organization can
be used to assume that functioning (action) at one level of hierarchy does not need to be reducible
to functioning at another level.* 

 

1.2.1 P

 

RINCIPLES

 

 

 

OF

 

 C

 

LEAR

 

 T

 

HINKING

 

One aspect of the appearance of complexity is our complete dependence on the object language
in which observer’s causal questions (what? how? and why?) are formulated and the answers are
communicated. The object language of scientific observations [4,5,10,12,18–21] is meant to be
simple but the observed situations almost always appear to be complex, at least 

 

a priori.

 

 Therefore,

 

* Of course the opposite assumption, stating that properties at one level can be derived from behavior of things on another
level, can be and sometimes is made in the spirit of causal reductionism (see discussion in section 1.4 of this chapter.) Our
point here is that the framework of hierarchical systems allows one to choose between reductionist and nonreductionist
principles of methodology. Whether the choice is really essential or not is debatable and the answer clearly depends on the
specific nature of the problem.
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the observer is forced to actively ask and answer questions that pertain to the following 

 

principles
of clear thinking 

 

during the act of observing as well as before and after it: 

1. Principle of 

 

formal correctness

 

 — effective reasoning in science should conform to the
rules of logic (i.e., should be formally correct)

2. Principle

 

 

 

of

 

 causality

 

 — every scientifically explainable object, process, or phenomenon
(a fact) can be thought of as materially or logically entailed by a cause (also a fact,
object, or process)

3. Principle of 

 

hierarchical organization 

 

(a postulate of the existence of hierarchy of
things) — every scientifically explainable object, process, or fact belongs to a hierarchical
organization (a hierarchical system) and, at the same time, contains things organized
hierarchically.

4. Principle of 

 

logicolinguistic

 

 

 

fractionability

 

 — every scientifically explainable system can
either be represented as a subsystem (or a part) of a plausible (or well-defined) larger
system or be partitioned into subsystems whose properties are believed to be plausible or
well defined. To avoid the so-called 

 

infinite regress, 

 

one additionally assumes the existence
of the minimal parts (logicolinguistic atoms) that cannot be broken into smaller parts. 

5. Principle of 

 

material adequacy

 

 [21,22] — all concepts and linguistic constructs (partic-
ularly definitions) used to explain observations of natural systems must not only be true
but must also correspond to factual reality to a maximum degree possible. Our explana-
tions must be as relevant and as pertinent as possible to the actual observed process or
phenomenon that we try to explain. (Trivial or irrelevant truths should not be acceptable
as valid explanations).

The foregoing principles are arguably the rules for the observer’s “mind only” because they
cannot be effectively applied without semantic and pragmatic interpretation.* That is to say even
if a hard-core reductionist believer in materialism would like to see the parts and hierarchies right
there in nature (as some extreme materialists do), it would not really matter because such constructs
are only possible within a meta-language of reasoning performed by the observer’s structuring
mind. Ergo, the need for semantic and pragmatic interpretation of the rules of clear thinking are
one of the reasons for systems biology to be concerned with the scientifically viable methodology
of modeling, as well as with the distinction between a natural system and its model.

 

1.3 THE CONCEPT OF TRUTH IN NONDEDUCTIVE SCIENCE

 

About 2 years ago, I wrote [22]:

 

In everyday practice of science we assume that when an individual communicates results of an exper-
iment he or she intends to tell the truth. We need also to assume that all scientists intend to be truthful
to the best of their human capacity and therefore their scientific communications should not contain
intentional lies. Nor should their messages be intended to misguide or otherwise mislead others into
believing that something is true that in fact is not so. In other words we assume that individuals whose
craft is science choose to be truthful and honest and do in fact pursue the virtue of truthfulness to the
maximum of their capacity in every act of scientific communication. 

 

Even with these assumptions in mind, the business of approximating truth is intricate and
elusive. First of all, we need to follow pragmatic principles of clear thinking (see section 1.2.1),

 

* The principle of formal correctness (principle #1) is perhaps an exception here. There exist formal systems (such as, for
instance, propositional calculus in logic) whose syntax is sufficient to account for their own semantics.
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which often affect the nature of questions we are able to ask. That is to say, it cannot be taken for
granted that the questions we are capable of asking are most adequate regarding our interest in the
answer. Second, we are forced to use a subset of natural language to formulate our queries and to
communicate with each other. Ergo, we often need a linguistic convention that would define a
meta-language to specify the (object) language designed for communication.

 

1.3.1 G

 

RAND

 

 T

 

HEORIES

 

 

 

OF

 

 T

 

RUTH

 

Historically, we know of at least three different grand theories of truth:

1. Correspondence theory: What we say or see is true if and only if it corresponds to the
factual reality. Every pursuit of this doctrine requires, from the outset, that we take into
account the possible discrepancies between real facts and their models. 

2. Coherence theory: What we say or see is true if and only if it conforms to an existing
system of knowledge without contradictions. The validity of this theory depends on our
capacity to make sure that we have taken into account all the existing knowledge (an
obvious overstatement of our potential).

3. Pragmatic (utility-based) theory: What we say or see is true if and only if it is being
adequately used. One technical problem with this doctrine is due to our ability (or lack
thereof) to determine adequacy of usage. Another problem is integrity (or lack thereof)
of the users. That is to say, concepts and assertions can be used with or without regard
to merits of such utilization as long as it (the utilization) brings social, reproductive,
political, or any other merit-unrelated success to the users.

There also exist theories of truth that are blends of the foregoing three “pure” doctrines. For instance,
we can often encounter in science the following tacit doctrines:

4. Truth by convention (naive epistemological idealism): We agree to believe that certain
general assertions are true and do not require the evidence to demonstrate this fact. (One
classical example is an axiomatic system in mathematics, such as, for instance, Euclidian
geometry, where the axioms are assumed to be true theorems.) 

5. Truth by nature of things (naive ontological realism): Whatever we believe about the
observed relation between objects or phenomena or processes, the relation is true or false
in objective reality and has nothing to do with the observer’s ability (or lack thereof) to
determine that.

In formal logic and most of mathematics (i.e., in deductive sciences), we employ a formal
language (such as, for instance, predicate calculus or arithmetic) to determine if a given specific
statement formulated in this language is true or false. All we need to do is to check correctness of
use of the rules of syntax of the language. In this respect, the theories of coherence (theory 2 above)
and convention (theory 4 in our list) are favorite doctrines of truth in deductive science. The coherence
theory and conventionalism are also doctrines of choice in various disciplines of computer appli-
cations that require handling of large data sets (such as for instance database searches, data mining,
and pattern acquisition). The predominant paradigm in these fields is the creation of standards for
judging the quality of data or software. (Presumably, any standard is better than no standard at all.)

The schemes of arriving at possible truth in nondeductive science appear to differ from field
to field. For instance, most of physics and astronomy seem to rely on simple induction — derivation
of general rules of system’s activity from instances of specific processes. On the other hand,
chemistry and biology — in a very general view — seem to require more than a simple induction
to validate scientific claims. This not-so-simple induction along with other complicated modes of
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inference is often called 

 

pragmatic inference 

 

[5,9] and will be discussed briefly in the next section.
It is not clear which of the five theories of truth will be used by individual researchers. It looks as
though truth by correspondence (theory 1) is a favorite doctrine in systems biology and other fields
of science* because of the built-in distrust in our models. In fact, the correspondence theory requires
that we verify the fidelity, accuracy, and/or precision with which the models represent nature (i.e.,
the factual reality).

 

1.3.2 D

 

EDUCTION

 

, I

 

NDUCTION

 

, 

 

AND

 

 P

 

RAGMATIC

 

 I

 

NFERENCE

 

Forming conclusions from premises is called 

 

inference

 

. One can distinguish several types (modes)
of systematic inference. Their nonexhaustive list includes:

1. Deduction (from general to specific)
2. Induction (from specific to general)
3. Pragmatic inference

a. Abduction (finding the most plausible explanation available)
b. Consilience (transcending different sequences of inferences)

Formal logic, as we know it today, can only deal with deductive inferences and to some extent
with induction (such as inductive proofs of properties of integers). All other types of systematic
inference that appear similar to an intricate (i.e., not simple) induction are often referred to
collectively as pragmatic inference [9,23,24]. They cannot be easily formalized and thereby require
language and domain-of-application–dependent conventions that would define their semantics (syn-
tax alone will not suffice).** 

Inference via deduction always leads to specific conclusions from general premises. For instance,
the implication: “every man is mortal, I am a man, and therefore I am mortal” is an example of
deduction. The general scheme of deduction is:

1. Every object A has a property B.
2. Therefore, a given specific individual object A has a property B.

 

Induction

 

 is a derivation of a general conclusion from specific premises. The scheme of inductive
inference is:

1. Every individual object A observed thus far has a property B
2. Therefore every A has property B

The question of what the phrase “thus far” should exactly mean has been hotly debated for
centuries and is known under the name the 

 

Problem of Induction 

 

[25,26]. If we see the night
following the day, say 1000 times, does it mean that the night 

 

always 

 

follows the day? Or perhaps,
in order to decide that it is always a case, we need to see that happening 10,000 times instead of
1000? What about 10,000,000 observations? Will we be more certain of the outcome than we would
have been with only a 1000 events? 

 

* Mechanics and some other mathematics-dependent fields of physics (such as quantum theory) may be the exceptions
here. In these fields, a naïve belief in reality of models (theory 5) seems to prevail over correspondence to factual reality.
This is one of the nongeneric situations addressed by Hertz–Rosen modeling relation (see section 4 of this chapter) in
which the surrogate formal system is identified with the modeled natural system. In typical situations regarding modeling
nature, the two systems (natural and surrogate) should be kept separate.
** That said, the vocabulary and syntax of predicate calculus and quantification can be used as stenographic shortcuts in
meta-languages describing all kinds of inferential schemes, including those of pragmatic inference.
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Ever since Kant [27], the general answer to these kind of questions is to use reason and
experience together in determining the number (and kind) of observations and then transcend all
we know plus the outcomes of these observations into a new tidbit of knowledge. That has been
one aspect of Kant’s and his followers’ transcendental methodology. It has also been an underlying
principle of heuristics involved in planning experiments in all fields of science since, at least, the
Hellenic period in ancient Greece. 

The question of how to effectively do the transcending of our existing knowledge in the light
of new observations and new inferences is a subject of specific methodology of each field of science
and sometimes a style of individual researcher. However, there exist a few general guidelines that
can be summarized under the name of pragmatic inference (blend of few types of inference plus
a few pragmatic rules of transcending knowledge). Two known examples of types of pragmatic
inference, abduction and consilience, are described below.

Abduction, also known as inference to the best explanation, is a derivation of the most plausible
premises (explanations) from known alleged consequences. The most general scheme of abduction
is:

1. B is a set of observations
2. A, if true, has a good potential to be a valid explanation of B 
3. No hypothesis other than A appears to explain B as well as A does.
4. Therefore, A is probably true

C.S. Peirce who coined this term [28] has noticed that abductive reasoning can and often does
violate principles of formal logic and set theory. An example of typical abductive reasoning is:

Sentence 1: My bank has many $20 bills.
Sentence 2: I have a $20 bill in my pocket.

Therefore

Explanation: I obtained my $20 bill from my bank.

The obvious logical problem with this explanation is the fact that my bank does not need to
be a unique source of $20 bills. We could make the explanation stronger with the help of additional
evidence (such as, for instance, nonexistence of other than my banks in my geographic area or
some peculiar additional characteristics of the specific $20 banknotes) but generally abductive
reasoning tends to violate rules of logic.

Despite the logical weakness of abduction, it is a popular tool of providing plausible explana-
tions. Perhaps the most dramatic examples of acceptance of logically flawed abductive conclusions
are superficial statistical inferences such as, for example, this:

Statement 1: A large set (population) X contains a large number of red objects.
Statement 2: A not so large (smaller than X) set Y contains a significantly large number of

red objects.

Therefore

Conclusion: Y is a subset (sample) of X (population) or, in other words, X contains Y.

It is obvious that without factual, empirical evidence for Y being a subset of X, the conclusion
is false and a statistics done on Y does not need to correspond to statistical properties of X at all.
In particular, the elements of Y do not need to constitute a sample drawn from the population X.
Despite the misgivings of the foregoing erroneous sampling, the flawed “statistical” inference is
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commonly performed to demonstrate statistical support for specific experimental conclusions. In
other words, abduction is and will be with us for the time to come but we need to follow Peirce’s
advice and exercise methodological prudence while using it, at least by making sure that sampling
for our own statistical studies is done correctly.

 

Consilience

 

, as we understand it today, is a synergistic combination of two or more (originally
unrelated) sequences of inferences that can be transcended into a useful new concept or hypothesis.
Statements or intermediary conclusions from one sequence can synergistically enlighten another
(otherwise unrelated) chain of inferences and even (abductively) affect the conclusions.* The
important aspect of consilience is a semantic and/or pragmatic interpretation (that may or may not
be biased by further transcending by the observer’s “structuring mind”) of observations and syntax-
based inferences. In many respects, consilience can be seen as abduction and, even more so, as a
way of 

 

knowledge integration 

 

via creation of novel (or just useful) abstract entities. From this
perspective, one can distinguish the following types of consilience:

1. Data integration via 

 

naming 

 

(or renaming) and adjusting 

 

reference

 

 — Objects, phenom-
ena, and processes are bound together with concepts as well as relations between con-
cepts. The result of such blend is then phrased in a subset of natural language, such as
a jargon of a given discipline. An appropriately implemented metaphor, for instance, can
facilitate understanding of a group of phenomena in light of an existing or a brand new
conceptual framework alike. Similarly, a properly chosen analogy can catalyze under-
standing by bridging the phenomena that were unrelated to each other before.

2. Data 

 

compression 

 

via 

 

generalization 

 

— A set, usually a very large one, of individual
factual observations can often be described in a brief manner with the use of knowledge
from outside this data collection. The best examples here are trajectories of planets that,
once discovered, compress the detailed knowledge of a huge number of otherwise
unrelated positions of a celestial body in space. Similarly, chemical equations bring our
understanding of chemical reactions to an exponentially more satisfactory level than a
huge set of individual descriptions of experiments could afford. Numerous other exam-
ples, such as gas laws, include the use of compact mathematical equations to describe
(model) factual situations that without such formalism would merit a lengthy and often
inconclusive description.

3. Action (activity) 

 

iconization

 

 — Advanced use of symbols can, and often does, enhance
or redirect understanding. All kinds of schemata (including the overwhelming presence
of hierarchies in our definitions and reasoning) can symbolically represent a large body
of our knowledge (new and old alike) without any linguistic description of what exactly
constitutes this enlightened wisdom. Even a single symbol charged with a distillation of
a huge body of shared cultural experience, such as a trash can on desktops of most
personal computers, can be used to enhance or redirect understanding without any
exhaustive explanation. The essence of iconization is abbreviating a conceptual mind-
set shared by all potential observers with common experience. The symbols used as icons
must be interpreted in the same way by all their users or else the icons will not have

 

* The original concept of consilience has been coined by the “gentleman of science” William Whewell (1794–1866) in his
1840 treaty on the methodology of inductive sciences [29]. In this original version, he discussed only consilience of
inductions as a source of unexpected discoveries that could not be attained by simple induction alone. However, the pragmatic
principle of synergistic (or inhibitory) influences of sequences of inference need not be limited to inductive inference and
for all practical purposes such limits do not exist. As a matter of fact, Whewell’s understanding of the notion of induction
was reportedly [30] much larger than the standard meaning of this concept would imply. Whewell’s “induction” should be
understood, in today’s terms, as a knowledge integration with the help of old and new facts and concepts configured in an
effectively knowledge-enriching manner. Consilience, then, is a lucky combination of such “inductions,” which brings a
quantum leap of understanding a phenomenon or a process or a class of processes.
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their knowledge-summarizing power (and thereby will not be icons in other than an
open-interpretation, artistic sense).* 

 

1.4 REDUCTIONISM VS. HOLISM: A REAL ISSUE 
OR A MERE DETRACTION?

 

Some time ago I characterized the naive version of reductionism in today’s “postmolecular” and
“postgenome” biology as follows [10]:

 

According to the common-sense, naïve, interpretation of reductionism life should be fully explained
via exhaustive studies of systems of differential equations (dynamic systems) but very few, if any at
all, biologists would see the point in following this research programme. An extreme version of this
paradigm adopts an assumption that phenotype can ultimately be modeled by dynamic systems (i.e.
systems of differential equations in which rates, forces, are time derivatives). In a little less extreme
version of naive reductionism genes are assumed to prescribe (in an unknown way) the epigenetic rules
(also unknown) that in turn control interactions (of unknown nature and number) of proteins (of unknown
kind and function) with each other as well as with other (also unknown) ligands. 

 

As we can see from this quite accurate description, naive reductionist agenda, which has been
so successful in physics of the past three centuries, is not very convincing in biology in general
(not even in the physics-friendly “postgenome” biology).

That said, I hasten to mention that the long-standing debate between reductionism and holism
has been complicated by the intensity of political agendas of the most recent two millennia
(including the 20th century). Not only are the general methodological programs of natural science
difficult to express in language but also the unforgiving political pressures in different historical
periods prevented their scholars and savants from having any opinion at all. The lucky ones who
actually could express their opinions about their methodological worldviews often did not survive
this experience or, if they have, they tended to revoke their original claims under the stimulating
ambience of prison cells, torture chambers, or fear thereof. The last few decades of the 20th century
went a bit easier on opinionated scientists talking of the glory of reductionism. However, it would
be a mistake to say that rare instances of unemployment among (Western) life science faculties as
well biologists’ “vacations” in remote parts of former Soviet Siberia had nothing to do with attempts
to encourage silence about the holistic (systemic) methodological attitudes. In fact, silencing (or
enhancing) the scientists’ general worldviews continues to go on all the time for the reasons that
have nothing to do with science or even with the merits of the silenced (or enhanced) opinions
themselves. In the face of all this methodological and ideological mess, a good question to ask is:
What is the actual problem to be addressed with the help of learned opinions about the worldview?

As far as systems biology is concerned, the pivotal issue is reportedly a possibility of novelty
of systems behavior regarding its ambiance (generalized material and symbolic environment). In
principle, the occurrence of new, unexpected systemic characteristics (novelty) could be induced
via either emergence or anticipation or both. Emergence is an apparently spontaneous generation
of novel systemic properties that could not be predicted from the properties of components (parts)
of a complex system alone. Anticipation is characteristic of the so-called anticipatory systems
[31]** that contain predictive models of themselves as well as their ambiance and thereby can

 

* Specialists in a given field experience similar observations and use similar tools of interpretation. Because of that, they
can effortlessly communicate their opinions to each other but are often misunderstood by nonspecialists.
** An anticipatory system is “… a system containing a predictive model of itself and/or its environment, which allows it
to change state at an instant in accord with the model’s prediction pertaining to a later instant.” [31]. For the outside observer,
the net effect of emergence should be the same as that of an anticipatory behavior (i.e., the apparent novelty) but the actual
explanation of the phenomenon of novelty is entirely different. 
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unexpectedly, for the observer, change their current activity (behavior if you will) in response to
the predicted future states.

The intense and often politically charged debate mentioned earlier in this chapter was to a great
extent due to a fight between believers and nonbelievers in genuine novelty induced by emergence
[32]. But were the reasons for this fight or debate scientifically meritorious? Anybody who has
ever seen plants emerging from the seeds planted long ago does not have doubt that emergence is
a fact. Anybody who ever made a chemical synthesis or even saw a chemical reaction occurring
in a test tube does not have doubt that emergence is a fact. As a matter of fact, the phenomenon
of emergence appears to be so common in nature that it should pass even the most severe test of
systematic doubt. Why then is disbelief in spontaneous generation of novelty (such as emergence)
possible? Well, because admitting the fact of emergence (and/or anticipation for that matter)
sometimes contradicts other beliefs that their practitioners may find important for right as well as
wrong reasons. One of the best characterizations of this situation is given by the dean of modern
biology, Mayr [32], while describing properties of emergence:

 

During its long history, the term “emergence” was adopted by authors with widely diverging philo-
sophical views. It was particularly popular among vitalists, but for them, as is evident from writings
of Bergson and others, it was a metaphysical principle. This last interpretation was shared by most of
their opponents. J. B. S. Haldane (1932:113) remarked that “the doctrine of emergence … is radically
opposed to the spirit of science.” The reason for this opposition to emergence is that emergence is
characterized by three properties that appear at first sight to be in conflict with a straightforward
mechanistic explanation: first that a genuine novelty is produced — that is, some feature or process
that was previously nonexistent; second, that the characteristics of this novelty are qualitatively, not
just quantitatively, unlike anything that existed before; third, that it was unpredictable before its
emergence, not only in practice, but in principle, even on the basis of an ideal, complete knowledge of
the state of the cosmos.

 

Reductionism is a collective label intended to mark several worldviews and general research
strategies (sometimes distinctly different from each other). Selected aspects of these strategies
sometimes indeed reside behind the actual day-to-day methodology of scientific research but
sometimes are erroneously believed to motivate scientific methods. 

One can roughly distinguish at least the following four variants of reductionism [10,33]:

R1.

 

Ontological Reductionism 

 

— a worldview that the whole is strictly “nothing but” the
sum of parts. One can clearly distinguish two extreme traditions here:
R1a) A doctrine of 

 

reductive materialism

 

: All properties of the system should be com-
pletely derivable from properties of its parts and therefore emergence or anticipa-
tion, as a generation of surprising novelty, could not happen at all. 

R1b) A doctrine of 

 

reductive idealism

 

 sometimes referred to as 

 

physicalism

 

: All parts
of the system fit perfectly the grand “plan” or “design” according to which nature
is organized. There is no room for novelty as an attribute of nature. Any impression
of novelty should be due to our ignorance about some behaviors of the parts but
the systems characteristics should still be (ultimately) a combination of properties
of the smallest components.* Ergo, if we happen not to satisfactorily explain the
system from the properties of its alleged smallest parts, we would need to look for
errors in identification of components or properties and then repeat the process of
explaining over and over again. Not surprisingly, reductive idealism is almost
identical to the strong version of holism (see the sequel to this section).

 

* Physicalism is 

 

de facto 

 

a mixture of ontological and causal reductionism because it is based on the assumption of bottom-
up, upward, causation and the existence of the smallest components (atoms) that cannot be further divided into parts.
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Ontological reductionism is probably extinct from science by now but it had played a
constructive role as a belief system that fueled the development of mechanics, mechanical
devices, and even medicine (anatomy, morphology, cytology) for several centuries.

R2.

 

Methodological Reductionism 

 

— a research strategy that explores a concept of substi-
tuting a given system with a surrogate system. In this variant of reductionism, there
should be no problem with accepting emergence as long as it could be explained by the
properties of a surrogate system. The methodological version is pragmatically useful in
science because it leads to a clear-cut distinction between a natural system (ontological
entity) and its description (epistemic entity). This distinction is in fact reflected in a
meta-language describing the 

 

Hertz–Rosen modeling relation 

 

[8,31,34] discussed in
several places in this volume (including this chapter). In the case of convoluted (complex)
systems, the boundary between modeled system and its model (the epistemic cut [35])
is not easy to find and, when found, often leads to paradoxes or inadequate theories.
That is one of the reasons why a singe (largest) model cannot possibly be sufficient for
an adequate description of convoluted (complex) systems. To approach a satisfactory
systems description, a multitude (but an unknown number) of complementary models is
needed.*

R3.

 

Epistemological Reductionism

 

 — a view that the whole can (in principle) be a sum of
parts subject to adequacy of definition of “parts” and “sum.” Again, there should be, in
principle, no problem with emergence as long as it could be derived from properties of
an adequately selected set of parts. This version of reductionism is often associated with
methodology of physics expressed, for instance, in modeling biological systems in terms
of dynamical systems.

R4.

 

Causal Reductionism

 

 — a view that upward causation (“the whole is there because of
the parts”) should be legitimate but downward causation (“the parts are there because
of the whole”) should be forbidden. Here, a genuine emergence is impossible unless we
give up the property of an absolute novelty.

Causal reductionism can be seen as a special case of the epistemological one. It is
clear by now that this version of reductionism fails in a most visible way in biology after
being extraordinarily successful in physics since Newton. An obvious reason for this
failure in the case of complex biological systems is the fact the concept of function, and
thereby an idea of a goal of the system’s activity, is in fact an important ingredient of a
plausible biological explanation. A programmatic rejection of the entire idea of downward
causation must upset any methodology, even a reductionistic one, which aims at an
explanation of system’s behavior in functional and not only structural terms. Living
things appear complex because they are in fact convoluted in terms of their function.**
An orthodox adherence to causal reductionism could arguably be methodologically sound
for studies of structure at best. However all attempts known to this author (including his
own attempts) of explaining biological function in terms of structure alone lead to
inadequate or even irrelevant (trivial) explanations of their behavior (functioning).

 

* The nonexistence of the largest model and the need for a multitude of complementary models is the actual definition of
a complex system given by Robert Rosen [8,34].
** That is why the concept of functional 

 

complexity 

 

in biology needs to be separated from the notion of mere complication
due to a very large number of objects and relations between them. We often refer to this latter, combinatorics-related,
concept as 

 

algorithmic complexity 

 

[36–38] or 

 

compositional complexity 

 

[9,23,39,40] but in the context of systems biology
the word “complication” would be much more accurate. On the other hand, the concept of 

 

convolution 

 

reflects well the
functional, causal, or inferential intricacy we are facing while modeling biological systems or interpreting their models. In
other words, the property of being convoluted (and not the property of being complicated) is an essence of complex biological
systems.
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Scientific holism appears to be practiced in at least two following variants [41]:

H1.

 

Strong holism 

 

(ontological) — a view that putting together the parts will not produce
the wholes (such as living systems) or account for their properties and behaviors. This
extreme view is probably extinct from science by now because of the programmatic
rejection of all mechanistic explanations (and modeling) of the emergence and because
the latter is assumed to be a “creative” metaphysical principle [32,41] somehow pro-
grammed in the nature of things (the cosmos if you will). As I have mentioned before,
this version of holism is almost indistinguishable from reductive idealism.

H2.

 

Weak holism 

 

(epistemological) — a view that the parts of a complex system (such as a
living thing) are involved in a multitude of relations that do not exist for the parts in
isolation. In other words, properties of the system cannot be derived by just combining
the parts. The natural relations between various configurations of parts need to be taken
into account, as well. The existence of relations as legitimate subjects of studies opens
the door to the concept of novelty because even if the components of the system (the
parts) would not change their properties, the relations represent a new quality. Ergo,
novelty is not entirely impossible even if, for pragmatic technical reasons, it may be
difficult to make sense of. In this respect, overcoming these technical difficulties that
hinder explanation of emergence and/or anticipation would belong to science, mathe-
matics, philosophy, and other fields of creative activity that rely on modeling and rea-
soning.

In another text devoted to systems biology [10] I wrote:

 

… Most biologists appear to subscribe to a weak version of holistic worldview according to which
properties of biological systems cannot be derived from the properties of their subsystems alone. The
main reason why such derivation is questionable, even in principle, is the alleged fact that the observer
cannot be naturally separated from the observed living system.* On the other hand a forced (i.e. not
natural) separation of the observer from the observed (the epistemic cut [35]) can be done within every
model of the system under consideration. The price to pay for this necessary separation is an increased
risk of generating inadequate models. In these circumstances a reasonable future for systems biology
could be invention of reliable methods of measuring the material adequacy of models and definitions.
With such methods at hand biologists would be able to effectively address, identify and perhaps even
overcome the real misgivings of epistemological reductionism. In particular an accurate evaluation of
material adequacy could help formulating research questions in answerable ways .…

 

One should perhaps add here that an overwhelming majority of practicing scientists (including
this author) could be classified as methodological reductionists in their day-to-day research. How-
ever, at the same time, they interpret their findings and ask research-related questions with the weak
holistic attitude in mind. (That is particularly true of biologists.) Therefore, it is fair to say that
only the methodological variant of reductionism and the weak variant of holism are truly relevant
to science because they both make room for explanations of novel (emergent or anticipatory)
systemic properties. In biology, the weak holism is likely to become the predominant methodolog-
ical attitude (complementary to the methodological reductionism) because the process of isolating
components of organic systems often destroys (or conceals at best) their pivotal properties that
were to be exposed and studied in the first place [4,8].

 

* The analogy with complex number, given by Rosen in [20], comes to mind here. A given complex number can be
represented as a pair of real numbers but it cannot be derived within any set of individual real numbers (i.e., a complex
number C can be geometrically interpreted as a point in R

 

2

 

 but not in R

 

1

 

).
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Terminological distinctions between main methodological attitudes described thus far in this
chapter are schematically summarized in Figure 1.1.

 

1.5 THE ART OF MODELING

 

Regardless of the specific mechanism of how the observation is actually sought after, performed,
represented, and registered, most individual humans would agree that an observed object, phenom-
enon, or process should be distinguished from its image (representation) in the observer’s mind.
In certain circumstances, the representations of observed reality can be included in a (mental)
activity that appears to simulate real phenomena or processes. This advanced process of interpre-
tation is often referred to as a model of a specific, named, and observable aspect of reality.

A general research program of how the pairs <observer, observed> behave contains a method-
ology of modeling 

 

convoluted

 

 (complex) systems. The most general scheme of generating models
(the modeling relation due primarily to Rosen [8,31] as well as to Hertz [42], Kant [27], Mach
[19,43], and Aristotle [1]) is as technical as it is essential for systems science. Albeit it seems to
require a concept of “collective mind” of a class of observers (a 

 

meta-observer

 

 or a 

 

generalized

 

FIGURE 1.1

 

General methodological attitudes that pertain to systems biology. For simplicity, we assume that
rules of clear thinking are a part of general systems theory. This assumption is harmless because the (natural)
language and logic reside behind all possible aspects of the reasoning.
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observer

 

), it allows one to discuss convoluted systems (living things would be special cases of
those) in a pragmatically and logically clear manner. Needless to say, constraints of the meta-
language, in which validity of questions and answers can be judged, constitute a reason for the
observer’s influence on the reported outcomes of observations.* 

 

1.5.1 M

 

ODELS

 

 

 

OF

 

 C

 

ONVOLUTED

 

 (C

 

OMPLEX

 

) S

 

YSTEMS

 

1.5.1.1 The Meaning of the Word Model

 

The word 

 

model 

 

has been used in science in many different meanings. The three most popular
general definitions are:

1. A model of a formula of a (formal) language is defined in theory of logic as an
interpretation of the language such that the formula comes out true. (Formula is a string
of well-formed symbols of an accepted alphabet.)

2. A model of an observable phenomenon or process is another object, phenomenon, or
process that usually is easier to control and understand than the original. In this sense,
a model is a representation of the observed (subject of observation) designed by the
observer in a way that could facilitate further understanding of the subject of observation.

3. A model is a mapping whose domain is an observed real (naturally occurring outside
the observer’s imagination) object, phenomenon, or process and counterdomain is a
formal system with its own alphabet and rules of inference.

It can easily be noted that the metalogical meaning #1 above refers to a concrete realization
of abstract things (well-formed strings in a formal language) that can be tested for having certain
property (like, for instance, being factually true). The two other notions of a model (#2 and #3)
evoke the idea of describing operations that contribute to efficient representing of observed reality
by an observer or interpreter of observations. Thereby, the following considerations pertain to the
notions 2 and 3 above but to a much lesser extent (if at all) to notion 1.

 

1.5.2 T

 

HE

 

 HERTZ–ROSEN MODELING RELATION

The Hertz–Rosen modeling relation [8,31,34,42] is a general protocol of modeling (a meta-model
so to speak) based on the assumption that causal entailments within the modeled natural system
are “out there” as a property of nature (the facts if you will), while the plausible representations
of observable reality can be subject to inferential entailments (inferences) within a suitable formal
system. From this perspective, everything the observer can see and analyze is material and symbolic
(i.e., not material) at the same time. That is to say the material aspects of the observable reality
are complementary to the symbolic aspects thereof and there is no way around this dualism,
particularly in biology. One obvious consequence of the coexistence of material and symbolic
aspects of observable reality is the distinction between naturally occurring objects (including
phenomena and processes) and the laws of nature that “govern” their behavior. (The objects are
material all right but the laws are not, even in mechanics). A less obvious scenario can be noted
in biology where the actual observed objects are already sophisticated models of reality (such as
nucleotide and amino acid sequences of nucleic acids and proteins respectively) and not exactly
the generic tidbits of material reality per se. As a matter of fact, in order to be able to observe
convoluted (complex) systems, the observer usually needs a great deal of preparatory modeling.
(That is one aspect of Robert Rosen’s [8,31,34] preoccupation with complexity as a generic property
of systems that are not simple mechanisms.)

* This dependence on language is taken for granted and often forgotten but in the realm of systems biology, in order to
discuss the observer’s (modeler’s) actions, it needs to be reexamined in an entirely new dimension [4–6,10,13,44–47].
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The meta-model for modeling itself, the Hertz–Rosen modeling relation, is schematically shown
on Figure 1.2. It represents a general protocol that some generalized observer who understands
his/her own actions (a meta-observer) would need to follow in order to come out with a materially
adequate interpretation of observations of a natural system N. In the most general terms, it can be
seen as a schematic description of representing one system by the means of another, surrogate,
system in a way that is open to semantic and pragmatic interpretation by a generalized interpreter
(observer) who is versed with the object languages of both the actual and the surrogate entity. In
principle, several variants of Hertz–Rosen modeling relation are possible but for the purpose of
systems biology (and this volume) we will only discuss the meta-model that explores the assumption
of partial (local) independence of entailments in the natural system from the entailments in the
surrogate system. To further reduce an inconvenient generality of our meta-model, we will also
assume (as Newton, Hertz, Mach, Rosen, and many others did before us) that the entailments in
the natural system are causal entailments while the entailments within the surrogate system are
strictly “mind matters” called formal entailments or inferential entailments or just inferences. 

The natural system N and its surrogate S (usually a formal system) need to be brought into a
semantic correspondence (congruence) with each other as well as with the operations of encoding N
into S and decoding S back into N. This correspondence must be such that the inferences within the
formal system will semantically and pragmatically correspond to the entailments in the natural system
in the eyes of the generalized observer capable of understanding his or her own activities (a meta-
observer). Once the congruence is determined by the meta-observer, we can say that we have found
a model of natural system N. Otherwise, a given pseudostate of a modeling relation is a representation
of N within S but not a model of N. The congruence is by no means guaranteed and needs to be
found by experimenting with adjusting inferences within system S to causal entailments within N. 

The foregoing “iterative” process of searching for a model leads to a sequence of representa-
tional pseudostates of our meta-model, example of which is shown in Figure 1.3. It can be seen
from this Figure 1.3 that all entailments, causal and inferential alike, are ordered in time. Therefore,
finding a model of N (i.e., bringing N, S, E, and D in congruence) can only be achieved by a
sequence of pseudostates that correspond to moments in time.* 

FIGURE 1.2 The meta-model: Hertz–Rosen modeling relation. Selected observations about the natural system
N need to be “encoded” into their image in the surrogate formal system S. The image of encoded facts (data)
concerning N will be processed within S and then “decoded” back to N. “Encoding” and “decoding” (or
representing and counter-representing) are not formally definable within this meta-model. The essence of these
operations is to make a semantic and a pragmatic sense to a meta-observer who actually performs the actions
of representing and counter-representing. That is to say, the modeling relation is technically a model of all
specific acts of modeling (a meta-model) but “encoding” and “decoding” belong to the semantics and
pragmatics of the meta-language for describing the meta-models like that (i.e., to a meta-meta-language
regarding an object language of the specific models).

* Why is it a case? Well, because both causation and inference are ordered in time, causes by definition precede effects in
causal entailments (with the exception of causal loops) while premises precede conclusions in inferential entailments (with
the exception of inferential loops).
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Our discussion thus far indicates that the idea of modeling relation leads us to a language for
adequately describing the process of making models. Just like in logic, computer science, and
mathematics we need a meta-language to describe an actual (object language) and we need another
level of meta-language (a meta-meta-language) to be able to describe the meta-language. From this
point of view, the modeling relation corresponds to syntax of a meta-language of making models.
Semantic and pragmatic aspects of this meta-language are, however, on a different level that pertains
to the modeler. The modeler follows the syntax entailed by modeling relation via representing a
natural system in a symbolic form that belongs to a surrogate (formal) system. Then he or she
manipulates symbols of the chosen formalism and makes inferences according to his/her interests
and expertise (that is a pragmatic aspect of inference). The actual choice of formalism is one clearly

FIGURE 1.3 Modified Hertz–Rosen modeling relation (the meta-model) and its pseudostates. A sequence of
pseudostates ends when an adequate representation, a model, of N is found within S (pseudostate marked 3
in figures A and B). That corresponds to a congruence between Nk, Sk, Ek, and Dk. A — subsequent entailment
states (the pseudostates). B — simplified view of subsequent representations.
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nonsyntactitc (i.e., either semantic or pragmatic or both) aspect of this process. The (formal)
interpretation of inferences (but not inferences themselves) is clearly a semantic aspect of the
process. Another semantic aspect is a decision if the interpretation of formalism should be reinter-
preted (decoded) in terms of the natural system that originally induced this formalism. The prag-
matic aspect then is the actual decoding back into the natural system. Once again, the sensibility
and knowledge of the modeler will determine the outcome of decoding and its meaning (interpre-
tation of the formalism being reinterpreted) in terms of the natural system. 

The main lessons that can be learnt from this description are:

1. Syntax of the meta-language for modeling (the modeling relation) will remain the same
regardless of specific modelers using it in their specific semantic and pragmatic ways.

2. The specific semantic and pragmatic ways of using the modeling relation will determine
which syntactic representations (pseudostates) will bring natural and formal system into
congruence (i.e., will be models).

3. The models will typically be independent of each other and not derivable from each
other. In rare (nongeneric) situations that one model can be completely derived from
another, we can say that they both pertain to a simple (i.e., noncomplex, nonconvoluted)
“natural” system such as a mechanical device or a pure formalism. 

4. Time matters for modeling! For one thing, the modeling begins with a natural system
on the left side of modeling relation and then goes through a series of steps* (entailments
and interpretations-encodings or interpretations-decodings), each of which either pre-
cedes in time or follows in time some other steps. Another reason for importance of time
is the fact (Figure 1.3) that determining congruence of the natural system and the surro-
gate formal system is the process that begins in certain instance and ends in a later
instance (with a model). Finally, the very participation of a natural system in a modeling
relation entails the future surrogate systems or future pseudostates of modeling relation
(i.e., future pseudostates are likely to be entailed by the modeling relation itself). 

1.5.3 SEQUENCES OF REPRESENTATIONS: THE EPISTEMIC CUT

As we have mentioned before, modeling complex systems is intricate because of the very property
of complexity and because of the need of the observer (modeler) to communicate (or even think)
with a help of the language. Moreover, the specific observers have their favorite ways of interaction
with the external world (such as, for instance, through the senses), which, in turn, affects their
sensibility regarding potentially observable things, phenomena, and processes. For these various
reasons, the actual natural system can be separated from the appropriate (chosen) surrogate system
by a sequence of intermediate systems. This situation and some of its consequences are illustrated
in Figure 1.4.

The main problem with “encoding” and “decoding” operations in the original Hertz–Rosen
modeling relation (Figure 1.2) is to know where the natural system ends and where the surrogate
system begins. As we can see from Figure 1.4A–4D, we can almost arbitrarily pick the natural and
the surrogate system from the sequence of intermediate representations of the true natural system
N. This meta-model reflects the fact that indeed the observer is limited in his or her ability to pick
the representations of nature. As we mentioned earlier in this chapter, the limitations come from
several sources such as the complexity of natural system itself as well as the observer’s dependence

* We could call this process a meta-causation by analogy to the causation proper, which is always an order of events in
time (effects always follow causes.) Indeed, in the meta-language of modeling relation, a given noninitial pseudostate either
precedes or follows in time another pseudostate (Figure 1.3). We are also aware of cascades of models (or representations)
such that a given system is a natural system for the surrogate system from a moment earlier and a natural system for its
own surrogate system. Each system in such sequence of representations is associated with a moment in time (it can be a
time interval in an ordered set of nonoverlapping time intervals).
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18 Systems Biology: Principles, Methods, and Concepts

FIGURE 1.4 Sequences of intermediate representations help to explain the concept of epistemic cut. A —
Natural system N and a surrogate system S are not directly encoded into each other but are connected via a
number (6 in this example) of subsequent intermediate surrogate systems. B — What constitutes an observable
and modelable natural system is affected by the observer’s (experimenter’s) sensibility. In this example
(Figure 1.4B), the actual natural system N1 is not the one that should be modeled if the observer was able to
handle system N. That is an epistemic cut of type 1: The modeler/observer picks the first modelable surrogate
system available (marked as N1 in our example). C — What constitutes a manageable surrogate (formal in
most cases) system is affected by the observer’s experience with systems other than the observed natural
system N. In this example, the observer, for some pragmatic reasons, picks the surrogate system S1 that is
separated from the natural system N by a number of intermediate surrogate systems (4 in our example) but
is not the “ultimate” surrogate system S that could perhaps lead to a better formalization or inferences than
the chosen S1. That is the epistemic cut type 2: The observer picks the most semantically or pragmatically
convenient surrogate system S1. (An example of picking the most elegant notation or formalism comes to
mind here). D — Sometimes the observer (modeler) is interested in fidelity of observation(s) and therefore
would pick a representation of the modeled system such that there would be no intermediate surrogate systems
between the modeled system N′ and its modelable surrogate S′. That is the epistemic cut type 3: The observer
picks the first available surrogate of N that he/she can represent by the next surrogate of N in a satisfactorily
modelable manner. (In the example on Figure 1.4D N′ and S′ are the third and the fourth intermediate surrogate
systems [originally present in Figure 1.4A], respectively.)

A

B

C

SN

SN
S1

INTERMEDIATE REPRESENTATIONS

SN
N1

1          2         3       4        5        6N S
N’<=> 3   S’<=> 4

D

INTERMEDIATE REPRESENTATIONS

INTERMEDIATE REPRESENTATIONS

DK3072_C001.fm  Page 18  Friday, October 20, 2006  1:11 PM



Basic Concepts of Systems Biology 19

on perception via senses, language, knowledge, and experience. To use the modeling relation and
eventually find desired models, the observer must choose which of the intermediate systems
(Figure 1.4A) will serve as an observable (modelable) natural system and which will be designated
as an appropriate (manageable) formal system. The chosen intermediate representations of the
natural system, which participate in a given “usable” modeling relation is often referred to as an
epistemic cut* [8,10,35,48]. 

The epistemic cut is meant to reflect both the complexity of the true natural system and a
manifold of observer’s limitations. There can be several types of the cut. Three representative
examples are shown in Figure 1.4B–D. Finally, it should be noted once again that models resulting
from usable modeling relations need not be optimal regarding fidelity of description of “true”
natural systems. 

The modeling relation and the need for an epistemic cut have consequences in the domain of
theory of science. We are aware, for instance, of two major belief systems regarding science in
general:

1. The idea of unity of science
2. The idea of separate growth of methodologically distinct specialized fields of research

The belief in the unity of science is a well-known consequence of physicalism as well as
epistemological reductionism. It has been particularly disturbing to chemists and biologists until
the middle of the 20th century to be instructed by a few neopositivist and physicalist ideologues
that the only explanation of complex processes (such as life itself) must come from the lowest
levels of organization of matter. This quite poisonous ideology reduced all aspects of natural science
to particle physics or a variant thereof. Of course, anyone who was doing research or has just
studied science would not take this kind of ideological propaganda seriously because reduction to
the lowest levels of organization meant abandoning actual chemical or biological issues at hand
and switching to physics instead. 

In contrast to the unity of science, the paradigm of independent growth of specialized disciplines
has been and continues to be the actual belief of a vast majority of individual scientists. Conformity
to the art of modeling and the need for an epistemic cut make it quite obvious that even a single
complex system needs to be described by a variety of equivalent complementary models. Because
complementary models are not derivable from each other, there is no single largest (or superior)
model that would “unify” all explanations of even a single complex process. A single explanatory
framework that would unify explanations of all possible systems (complex and simple) is clearly
out of question within science. The need for epistemic cut clearly entails a deep, problem-oriented
specialization in science while, at the same time, making the idea of unity unrealistic.

I hasten to mention that the foregoing perspectives and views are not meant to contradict
opinions of specialized philosophers of science. My views are that of a practicing scientist and I
have neither an intention nor expertise to argue a novel philosophical agenda. That said, I would
not be surprised if systems biology would inspire serious philosophical thinkers toward developing
a systematic methodology of meta-modeling and (epistemic) cutting. Moreover, I would be
delighted if this volume (or at least this chapter) could be instrumental in such a task (of inspiring).

1.6 METAPHORS IN SYSTEMS BIOLOGY

It is well known that metaphors play an extraordinarily important (if not pivotal) concept-generating
role in all fields of science [6,18,49–52]. Particularly, when we are dealing with processes that are
too complex to be easily described or even named, metaphors can help. 

* Sometimes, the act of choosing the representations is called epistemic cut as well, but it should more appropriately be
called “making an epistemic cut” or “epistemic cutting.”
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20 Systems Biology: Principles, Methods, and Concepts

Figure 1.5 shows the difference between complementary models (Figure 1.5A), metaphors
(Figure 1.5B), and analogies (Figure 1.5C). From the perspective of modeling relation, metaphor
can be simply defined [8] as “decoding” without the previous “encoding” (Figure 1.5B). 

As we can see from the Figure 1.5C, analogies are simply two or more natural systems that
are effectively modeled (or at least appear modelable) by the same formal system. An example
here can be a pendulum (N1) and an electrostatic condenser (N2); both are usually represented by
the same set of differential equations (formal system S). We can notice here that an analogy is also
a reversible (bidirectional) metaphor but the reverse does not need to be true (i.e., most metaphors
are not analogies). 

Figure 1.5A defines the notion of complementarity of representations and models. If two or
more surrogate systems (S1 and S2 in our example from Figure 1.5A) can be brought into congru-
ence with the same natural system N, we call S1 and S2 complementary models of N. 

I hasten to add here that there are several other definitions of metaphor that are complementary
to the one formulated in terms of modeling relation with the help of schemata like the one shown

FIGURE 1.5 Configurations of connected representations. A — Two or more different surrogate systems (S1
and S2 in this example) can represent a given natural system. We say that S1 and S2 are complementary
representations of N. If there is congruence between N and S1 as well as between N and S2, we can say that
S1 and S2 are complementary models of N. B — “Decoding” without “encoding” is characteristic of a
metaphor [8]. The figure shows an example of the simplest metaphor in which the participating three systems
are indeed subsequent to each other in terms of sequence of encodings. C — If two or more natural systems
can be represented by the same surrogate system, we say that the natural systems are analogous to each other.
In particular, natural systems represented by the same formalism are analogous.
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on Figure 1.5B. More precisely, our modeling relation provides a universal syntax of the meta-
language that can be used for making semantically specific definitions in appropriate object lan-
guages.* Among these specific definitions, the ones adopted from linguistics claim simply a
transformation of meaning of symbols (including situations, like in allegories) into a distinctly
different domain that may or may not be a member of a larger family of meanings. A more detailed
discussion of definitions of metaphors exceeds the scope of this chapter and will need to be delegated
to a more specialized future work.

A while ago, in another text [18], I described the relationship between cascades of models and
metaphors as follows:

… As far as science is concerned metaphors relate to models and their representation in terms of other
(new) models. More often than not a given natural system is inaccessible for direct observation
(interpretative reasoning included) in which case we need a model to represent it and to talk of it. The
model may still be inaccessible for observations in which case we need a model of a model that in turn
may require yet another model. The process of modeling consecutive levels of models may continue
until we feel comfortable with the sensual and conceptual categories generated by a “final” model in
the cascade (series) of models. Of course each time we map a model onto another model we take a
risk of missing or misrepresenting some properties of the input model as well as adding new properties
which originally were not there. We also take a risk of misrepresenting original relations between
properties. That is to say, ideally, our intended mapping should preserve the relational structure of the
input model. In practice this invariance of mapping may not always be achieved because of profoundly
convoluted (complex) properties of relations that should be preserved or simply because of human
errors in perceiving the outcome of the mapping. At this point metaphors enter the methodological
picture: instead of modeling a natural system (or its earlier-generation model) we can model its metaphor.
The advantage of this deviant but common procedure is the fact that an intuitive understanding of the
system provided by a good metaphor helps us to create workable models within which we can ask
adequate questions and judge the completeness (or incompleteness) of answers. This in turn is an
effective way of deciding if we need further models in the cascade or if we are satisfied with the current
model as a “final” one. [Metaphors are particularly useful for representing complex systems or their
aspects.] …

To complete this section, let us consider a few examples of the most prominent metaphors in
systems biology. 

1.6.1 THE MACHINE METAPHOR 

A biological object (such as cell, organ, organism, population, and so on) is thought of as a machine
(such as a mechanical device, clockwork mechanism, and so on). The simplified configuration of
the shades of meanings of this metaphor in biology is shown in Figure 1.6.

1.6.2 THE LANGUAGE METAPHOR 

Biological objects (such as genomes, proteins, metabolic pathways, and so on) are thought of as
texts written in an unknown script over an unknown language. The meanings conveyed by such
alleged texts are seen as subjects to “deciphering” by industrious biomedical savants. The simplified
configuration of the shades of meanings of language metaphor in biology is shown in Figure 1.7.

* Ever since Lakoff and Johnson published their Metaphors We Live By [53], the interest of scientists in scientific metaphors
has continued to grow. In the time of writing of this text, there should be more than 200 nontrivial publications that deal
with metaphors in science alone. The literature on use of metaphors in other fields such as architecture or law (not to
mention the most obvious field of fiction writing) is about 20 times larger than that.
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22 Systems Biology: Principles, Methods, and Concepts

1.6.3 THE ORGANIC SYSTEM METAPHOR 

Biological objects have genuine organic properties that are responsible for the state of being alive.
However, these properties if combined in isolation from living things do not need to lead to the
actual living organism. They can simply materialize in a form that, in many respects, is similar to
an organism but not an organism itself. Such preorganismal configurations of matter can evolve
toward organisms but there exist other, nonorganismal, options for such evolution as well. (Examples
from ecology [47] are the most prominent here.)

1.6.4 THE METAPHOR OF ORGANISM 

An organism is considered to be a meaningful unit of living matter capable of adaptation and
evolution. The organism can be characterized in a similar way as organic system but it also entails
its own history and memory thereof. In principle, the organic system plus history would exhaust
the main biological meaning of this metaphor. The origin of the term “organism” relates it to
machine metaphor.

1.6.5 THE METAPHOR OF INFORMATION 

The Aristotelian “soul” of things (including living things) refers to their internal organization as a
system. Information would be a representable (or communicable) essence of such organization.
Specific meanings of this metaphor (the submetaphors) can be found within all other metaphoric
concepts mentioned above. For example, Figure 1.8 shows the configuration of meanings within
the machine metaphor while Figure 1.7 shows the meanings of “information” within the language
metaphor.

FIGURE 1.6 Machine metaphor in biology. Most characteristic configuration of meanings. 
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Studies concerning systematic reasoning with the use of metaphors will certainly continue in
the future, within systems biology and computer science at large. Ideally, it should be possible to
develop a method of selecting (if not designing) metaphors that would pertain to a given factual
scenario with the highest adequacy. 

FIGURE 1.7 Language metaphor in biology. Most characteristic configuration of meanings. A characteristic
configuration of meanings for the metaphor of information (a linguistic variant thereof) is shown on the top
of this tree. 
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Our introductory expose of fundamentals of systems biology needs to end here. I believe the
readers who have read this chapter will have a firm grasp of basic intuitions and concepts. Reading
the sequel to this volume should help in understanding pivotal aspects of today’s interdisciplinary
research, which are focused on biological questions in a way that evokes diverse styles of systems-
level thinking.
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A

 

BSTRACT

 

The chapter reviews the history of systems approaches to biology. It places particular emphasis on
biochemical systems theory, which has unique features that provide superb tools for modern systems
biology. 

 

2.1 INTRODUCTION

 

Science is the attempt to make the chaotic diversity of our sense experience correspond to a logically
uniform system of thought.

 

Albert Einstein (1879–1955)

 

Over 5000 yr ago, some clever Egyptians figured out how to make bread and beer. The bread was
probably leavened by a mixture of yeast and lactic acid bacteria, both of which were ingredients
in the beer mash and foam that were used as a starter culture for bread production. The twofold
biotechnological production was quite an ingenious accomplishment of bakers and brewers, who
learned, with increasing sophistication, how to affect the processes by varying the amounts of flour,
water, and starter, temperature and other conditions, even though they did not even know what the
active ingredient in beer foam was until the middle of the 19th century [1]. 

Currie [2] is to be credited with the first significant steps of optimizing the biotechnological
production of citric acid, using strains of the black fungus 

 

Aspergillus niger

 

. His extensive studies
of strains and culture media at the beginning of the 20th century were so successful that they
allowed the U.S. to become self-sufficient and even export citric acid to Europe. Since Currie’s
seminal work, probably a thousand or more scientific studies have been published and several
hundred patents issued. 

Today, when we discuss the role of systems biology, and of mathematical models in particular,
we often begin by emphasizing that we seek an understanding of how biology works [3,4]. Did
the Egyptians not understand baking and beer production? Did Currie not understand citric acid
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production by the mold? Do we understand it now? These are simple yet puzzling questions that
force us to define what we actually mean by 

 

understanding

 

. Just by pondering the early examples
above, we see that there are clearly different degrees of understanding that have to do with
knowledge of biological details and mechanisms. What may not be immediately evident is that
understanding is also subtly but crucially shaped by the philosophical surroundings and the cultural
and scientific milieu of every society’s time and place in history [5]. To appreciate our current
concepts of understanding and the emerging biological thinking in terms of systems, it is useful to
traverse the history of science in a flash and to identify turning points and shifts in thinking that
changed the ways with which biology and medicine were approached. By reviewing the different
eras of scientific pursuit, it will become clearer why a systemic approach to biology is not simply
the next fad along the path of the traditional experimentation of the previous century, but a
fundamental shift in mind-set. 

Following the brief historical review, we will outline challenges that systems biology has to
overcome, propose concepts that can address these challenges, show some specific examples, and
discuss our expectations for the short-term future. In all these considerations, we will focus almost
exclusively on modeling aspects, and even within this limited domain, we will restrict ourselves
to just a few concepts and methods that address dynamical systems and models that are scaleable
to biological networks of realistic size. This limited scope of our presentation is particularly blatant
in our neglect of describing modern high-throughput experimentation, which is an absolute require-
ment for most of the modeling and mathematical systems analyses. We will mention some exper-
imental techniques that appear especially promising for modeling purposes, but otherwise refer the
reader to the growing literature in the area.

 

2.2 HISTORICAL BACKGROUND

 

Trying to understand natural phenomena in biology and medicine, has probably been a challenge
to the mind as long as humans have had conscious thought. Today, we argue within the logical
framework of causality and are concerned with problems of complexity that stem from the enormous
numbers of constituents even within a single cell and from the intricacies of mechanisms at all
levels of biological organization. In ancient times, these concerns were not of particular interest.
Instead, what dominated the thinking about nature from antiquity well through the Middle Ages
was, first, the general philosophy of nature and, second, an entirely pragmatic quest for medical
and pharmacological answers to problems of disease. The philosophical thinking about nature
strongly emphasized the quest for origin and matter. It explored the implications of five fundamental
ideas that continued to determine mainstream thinking about biological science for 2000 yr. These
ancient ideas were documented in China, India, and Greece, accepted with slight extensions
throughout the Arabic world between 600 and 1200 

 

A

 

.

 

D

 

., and remained at the center of scientific
thinking until the Renaissance. They are described in splendid detail in the work of Leicester [6],
from which much of the following is excerpted.

The first idea held that all consisted of 

 

elements

 

, or 

 

atoms

 

. The second idea suggested that

 

transmutations

 

 transformed the elements into each other. The third idea described a 

 

dynamic
equilibrium

 

 of all processes in the universe. The fourth idea postulated a strict correspondence
between macrocosm and microcosm, and the fifth idea was the concept of 

 

teleology

 

, which main-
tained that every thing in nature had a purpose or was created for a purpose.

Eastern and Western philosophies alike postulated elements, of which all was composed,
sometimes even emotions such as love. Chinese philosophers suggested five types — water, fire,
wood, metal, and earth — but maintained that for most properties in the physical world, substances
were not as important as operations. In Indian philosophy, the world was made of water, fire, and
wind. Water was considered a liquid energy of life and, in the form of phlegm, lubricated the body
and held it together. Thales (624–546 B.C.) believed that water was the essence of everything. It
was the element of which all was composed and to which all returned. Fire created body heat and
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was found in the body as bile, whose function it was to extract energy from food and process it.
Wind and breath were responsible for the voluntary and involuntary movements of the body parts
and for the exchange of messages. Empedocles of Sicily (492–432 B.C.) postulated that the four
elements (“roots”) fire, air, water, and earth moved around according to a divine, mechanistic law.
All matter and all organisms were composed of the four elements, and different combinations of
their amounts explained the differences in species. For instance, fire dominated in birds, which
explained why they were able to fly. Aristotle (384–322 B.C.) based nature on four principles,
matter, form, movement, and purpose, and discussed these within this theory of logical causation.
For specific arguments, he accepted Empedocles’ four elements, but added 

 

pneuma

 

 (breath of life)
as the fifth element (

 

quintessence

 

) of which stars were made. Aristotle used additional elements,
such as bones, flesh, and soul, the latter of which he alleged to be responsible for the distinction
between life and death. 

With variations, the atomistic doctrines remained in effect for almost 2000 yr. During the great
period of Arabic science (800–1200 A.D.), Aristotle’s teachings were still considered dogma, but
by then the atoms were thought to have not only innate properties, but also attached “accidents”
such as rest, motion, life, death, ignorance, and knowledge. Even in the 18th century, the idea of
a few elements was not completely abandoned. At that time, the elements were spirit, phlegm, oil,
salt, and earth. 

In addition to elements, the ancient thinkers postulated various transmutations that provided
“mechanistic” explanations of metabolism and life. In fact, the word used by the Greeks was

 

khem

 

(

 

e

 

)

 

ia

 

–

 

(“chemistry”), which denoted the art of transmutations practiced by the black (khem)
people of Egypt. In Aristotle’s teaching, the fundamental biochemical process was 

 

pepsis

 

 (coction)
of the elements in the form of heat, cold, moisture, and dryness. A specific transmutation that was
taught for many centuries was that of blood into flesh. The alchemists of the Middle Ages still
used Aristotle’s “equations”: Heat + Dryness = Fire, Heat + Humidity = Air, Cold + Dryness =
Earth, and Cold + Humidity = Water. Furthermore, water was thought to transmute earth into a
liquid, but then this liquid transmuted back into earth. The ultimate goal was to extract, with
precisely executed experiments at astrologically perfect times, the quintessence — the fifth eternal
element. 

While transmutations were continually changing the elementary composition of an organism,
the organism and the universe in Eastern as well as Western philosophy remained constant overall.
Illustrating this dynamic equilibrium theory, Heraclitus explained: “Change is essential and every-
where: You can never step twice in the same river, for fresh waters are ever flowing in upon you;
fire burns continually, but is always different in its sources and products.” The elements fire, water,
and earth that comprise the human body constantly change into one another, but the body as a
whole does not appear to change, even though it was acknowledged that minor oscillations in the
interconversion of the basic substances could account for such phenomena as sleep and wakefulness.” 

Of course, nobody had actually seen fire or air as driving forces of metabolism, but these
elements were postulated by the need to fulfill particular functions and by the idea that macroscopic
processes also governed the microscopic roles of metabolism. The living human body is warm, it
was argued, and the simplest macroscopic way to explain warmth is fire; thus, fire was postulated
as the force warming the body. Today, we would have our doubts about this line of argument, but
because it was logically defendable, the hypothesis was satisfying to the Greeks and others who
followed their doctrines. This is probably the greatest difference between scientific thinking in
antiquity and modern times: The Greek thinkers were extremely curious and logical and loved to
develop consistent theories explaining why things behaved the way they did. But in contrast to today’s
scientific thinking, they did not consider it necessary to test theories against experiments, as long
as the logic of the explanation was intact. By the same token, they did not see a need to distinguish
or decide between competing theories, as long as these could be logically defended. The concept
of systematically using controlled experiments to assess the validity of theories did not come to
fruition until the late Renaissance [7]. 
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A real change in the way scientists thought about nature came with a period of confusion and
transition during the 16th and 17th centuries. Science could not quite let go of the concepts of a
few universal elements and the correspondence between macrocosm and microcosm, and even the
famous nonconformist physician and pharmacologist Theophrastus Bombastus von Hohenheim
(1493–1541), better known as Paracelsus, worked with a triad of “primitive materials,” which were
sulphur, representing all vapors, mercury, representing combustibility, and salt, representing solid-
ness. Nonetheless, nagging doubts began to emerge about Aristotle’s ideas, and key elements of
the ancient doctrines were now challenged with arguments of the new scientific thinking. The
Belgian scientist Jan Baptista van Helmont (1577–1644) boldly contested Aristotle’s suggestion
that heat was the mechanism of digestion by arguing that food in warm places just spoiled and that
fever did not appear to improve digestion. 

Those were convincing arguments, and they slowly caused science to experience a shift from
the ancient concepts toward the more modern scientific concepts of controlled experimentation.
The idea of general concepts made place for specific hypotheses that were tested in decisive
experiments and mathematical theories. It became commonplace to dissect corpses and to execute
animal experiments. Instead of viewing the body as an integral entity, individual organs or functions
became the focus of investigation. Using Kuhn’s [8] terminology, science of this period underwent
a paradigm shift in which the old conceptual models were replaced with new ideas and new ways
of performing science. This shift was very slow and painful, especially since it conflicted with
church teachings, but had to occur since the old paradigm encountered obvious failures and
irreconcilable inconsistencies.

The envy of biologists and chemists at the time was astronomy, which viewed the physical
universe as an exquisitely designed giant mechanism that obeyed elegant deterministic laws of
motion [9] and was characterized by precision and predictability. Aided by new mathematical
concepts like differential calculus, astronomy allowed the description of natural phenomena with
unprecedented rigor, and scientists began to discard theories — for instance, those pertaining to
theology or the concept of the soul — which either could not be tested against observations or
failed the test. This scrutiny gained acceptance as the new norm, because it was considered the
reason for the great strides in astronomy. Astronomy was being formulated quantitatively with the
new tools of science, and its miraculously precise predictions resulted from well-controlled exper-
iments and stringent mathematical analyses, which suggested that chemistry and biology should
attempt the same. Textbooks began to characterize chemical compounds according to their measur-
able physical and chemical properties. Blood pressure measurements became a standard diagnostic
tool, and the old-fashioned visual uroscopy was replaced by quantitative urine analysis, since it
was recognized that it provided quantitative information about the nature of changes in the body [6]. 

Quantification was the first significant ingredient of the rapidly accelerating exploration and
discovery of mechanistic laws governing biochemistry and physiology. The formulation of kinetic
phenomena in terms of enzymatic rate laws became a standard procedure in biochemistry, and the
evaluation of parameters such as the maximum velocity and the Michaelis constant became the objective
of thousands of biochemical studies. In a similar way, physiological research concentrated on
providing mechanistic explanations in mathematical form and pursued physicochemical concepts
of oxygen utilization, thermodynamics, mass transfer, and neurotransmission.

The second crucial ingredient of the success of science in the 18th, 19th, and 20th centuries
was the concept of 

 

reductionism

 

. Paralleling the search for mechanistic explanations of physiolog-
ical and biochemical processes was the idea that, to understand an organism, one would have to
understand its organs, and to understand those, one would have to study tissues, cells, and subcellular
components. Ultimately, one would arrive at the most fundamental elements and processes, and
once all these elementary units were known, one could use this knowledge to reconstruct cells and
organisms and, hence, understand life. This approach of reductionism was diametrically opposite
to the old holistic thinking that required that the entire organism be considered within its environ-
ment if one wanted to explain metabolism and disease, as the father of medicine, Hippocrates, had
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suggested. Now, the reductionist goal was to find the most basic constituents that made an organism
work. 

Anatomical and physiological similarities between different species, even between animals and
plants, suggested that it might be useful to begin the search for the secrets of life with convenient,
simple organisms, such as 

 

Escherichia coli 

 

and 

 

Drosophila melanogaster

 

. The requirement of
experimental controls and reproducibility usually eliminated analyses of whole organisms, and the
gold standard of biochemical and physiological experimentation became instead the well-controlled

 

in vitro 

 

experiment. With the growing sophistication of methods and technologies, research concen-
trated on increasingly specific details. The analysis of overall organ function shifted toward specific
physiological processes and the biochemical characterization of pathways. The regulation of path-
ways was found to be intimately related to enzymes and factors, and it became an objective to find
out how these were regulated, which genes controlled them, and what the sequences of these genes
were. The approach of reductionism directly led to the present-day mainstream experimentation in
the life sciences and provides the rationale for endeavors like the Human Genome Project. 

 

2.3 BEYOND REDUCTIONISM

 

While biology became extremely successful in teasing out intricate features at smaller and smaller
scales, it turned out that reductionist methods, even if executed to perfection, could not solve all
problems. Reductionism was creating a parts catalog, but as Henri Poincaré (1952) said: “The aim
of science is not things in themselves but the relations between things.” A crucial aspect was
missing. Even equipped with knowledge about many of the constituents of cells, it remained
impossible to predict with reliability how an organism would respond to untested conditions or
stimuli. Thus, even the rapidly growing amount of data and experience with microorganisms and
cell lines did not yield the desired true understanding of biological phenomena. Very slowly, it
became apparent that another paradigm shift was necessary. New laws had to be postulated — not
laws of “life forces” or teleology but laws of integrated systems and of organized complexity —
one step beyond the Newtonian view of organized simplicity, and two steps beyond the classical
worldviews of divinely ordered or imaginatively envisaged complexity [9]. In Wolkenhauer’s [10]
estimation, one of the most significant achievements of the systems biologist Robert Rosen in the
1960s may have been his introduction of biological theory sufficient to investigate final causation
without implying teleology.

Key concepts of the shift toward objective system thinking were not an invention of the 21st
century, but can already be found in the seminal work of isolated biologists, physicists, and
mathematicians, most notably Lotka [11] and Ludwig von Bertalanffy [12–14], who laid the
foundations of modern systems science and stressed mathematics as the language of choice for
describing biological systems and their dynamics. Even though many of von Bertalanffy’s insights
regarding open and closed systems, perturbations, stability, and dynamic equilibria [13] are still
valid and may almost sound commonplace today, they were received all but warmly by his peers
and by and large ignored by the community of biologists. Things improved somewhat for systems
analysis in biology in the late 1940s, when several fundamentally novel concepts appeared almost
simultaneously. Wiener’s cybernetics [15], Turing’s ideas of automata and computability [16], von
Neumann and Morgenstern’s game theory [17], and Shannon’s information theory [18] enjoyed
considerable interest in engineering and various areas of the physical sciences, and eminent math-
ematicians and engineers pushed for the development of systems theory [10].

Some forward-thinking scientists, such as Rashevsky [19], Ashby [20], Rosen [21,22], and
Mesaroviać [23,24], actually proposed applying systems concepts to biological phenomena. Weaver
[25] proposed a science of complexity in biology. Rashevsky even developed a doctoral program
in mathematical biology at the University of Chicago and in 1939 created the 

 

Bulletin of Mathe-
matical Biophysics

 

. Applications often focused on kinetic phenomena in biochemistry, questions
of growth, development and pattern formation, and the nervous system. As early as 1940, Rashevsky
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[19,26] and Turing [16] proposed abstract systems of two morphogens with autocatalytic features
that described features of organismal development. In a similar vein, Kacser [27] demonstrated
that even very small networks of biochemical reactions can exhibit switches from one steady state
to another, for instance, by a simple change in temperature or by a change in a single influx or
efflux. These mechanisms created the conceptual basis for the famous work of Gierer and Meinhardt
[28] on the development of hydra and other organisms, which has been dominating the study of
biological pattern formation for the past 30 yr [29].

Goodwin [30,31], Heinmets [32], and others began developing kinetic models of gene regulation
through induction and repression, describing in mathematical terms the ideas of Jacob and Monod
[33] on the functioning and regulation of operons in bacteria. In the same context, Rosen [22]
discussed the importance of negative and positive feedbacks in living systems and developed
abstract, algorithmic ideas of cellular regulation. 

Based on the theory of finite automata and Turing machines, Stahl and Goheen [34] investigated
“algorithmic cell models,” in which cellular control mechanisms were represented through the
logical manipulation of large molecules such as DNA, RNA, or proteins. These models contained
dozens of enzymes and products and allowed rather complex biochemical simulations with different
initial conditions [35]. Automata were also shown to be useful for the formation of complicated
patters, when each “cell” was governed by rules that accounted for the cell’s position on a grid
[36,37]. These ideas are still popular today, as exemplified in John Conway’s “Game of Life” [38].
Apter [39] used growing automata nets to explain spatial differentiation and development, and
Sugita [36,37] developed digital models of regulatory gene circuits, based on logical functions such
as “and,” “or,” and “not” and showed their equivalence with McCulloch–Pitts neural nets [40]. In
addition to these early systems analyses, several biomathematicians, notably Rashevsky [41] and
Hodgin and Huxley [42], worked on issues of signal transduction in nerve cells. In 1961, the 

 

Journal
of Theoretical Biology

 

 was born.
Thus, many seminal ideas of today’s systems biology emerged during this period. But the time

was just not yet ripe for mainstream acceptance of systems thinking in biology. Most biomathe-
maticians continued to be isolated and biology remained to be synonymous with laboratory work.
As is typical for every major paradigm shift, the community was not enthusiastic about changing
the proven and successful ways of doing science. The tradition of reductionism continued to be
the overwhelmingly dominant approach throughout the 20th century. 

Given the huge success of reductionism, one must indeed ask why any biologist should do
anything but reductionism. The answer is twofold. An almost practical aspect is that reductionist
research is generating so many data that it is becoming mandatory not just to collect and store
these data in databases, but to develop a functional context within which each experimental result
becomes meaningful. Data must become information [43]. Without a functional context, data are
isolated factoids, simple descriptions of features, and only their integration within their physical,
spatial, and functional surroundings yields insight and, ultimately, knowledge and understanding.
As Davenport [44] noted: “Data are not information. Information is data endowed with relevance
and purpose. Knowledge is information endowed with application. Wisdom is knowledge endowed
with age and experience.”

Of course, experimentalists never operate in a vacuum. There exists probably no pure reduc-
tionist, and every experimentalist is aware of the importance of scientific context. In fact, every
experiment is necessarily guided by a mental model that serves as the basis for the formulation of
hypotheses. This model is certainly not always mathematical and may not even be explicit, but it
may nevertheless be very sophisticated and complex. It could well be the characterizing feature of
superb experimentalists that their mental models are crisp, predictive, testable, comprehensive, and
very often accurate. What is emerging with the new scientific paradigm of systems biology is
therefore not so much a shift away from current experimentation or reductionism, but a more
structured, mathematical formulation of hypothesis-generating, predictive models and a type of
large-scale experimentation that targets comprehensiveness, if not completeness.
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A deeper aspect of the shortcomings of reductionism is the observation that components of
systems often behave differently 

 

in situ 

 

than in isolation. Sometimes, these differences are insig-
nificant, but in other cases they may very drastically affect the role and function of a component.
If so, any purely reductionist approach must fail, because its key tenet is complete isolation and
perfect purification. To put it more positively, reductionism must be accompanied by a phase of
reassembly of components [5,45]. It is mandatory to pay attention to the interactions and relation-
ships among components, wherever possible, in their natural context and environment.

 

2.4 CHALLENGES

 

If this step of reassembly makes so much sense, why has there been such reluctance to accept ideas
of systems thinking, as von Bertalanffy had proposed it many decades ago? Outside the inertia that
delays any paradigm shift, the dominant reason for not studying whole systems is the enormous
complexity of living cells and organisms, which may be characterized by three aspects. First, even
the simplest cells consist of many more components than our minds can keep track of. A simple
yeast cell has over 6000 genes; humans have proteins numbering in the hundred thousands. Even
naming such vast quantities and remembering the names is a challenge. 

Second, these components interact with each other in multitudinous ways, directly or indirectly.
Simple mathematics tells us that the number of possible connections may easily grow quadratically
with the number of components, even if there is only one type of interaction between each pair of
players. However, it is well known that intra- and intercellular connections are of very many different
types and functions, many of which we do not yet understand. Furthermore, the same protein may
have entirely different roles, and the same gene may be spliced in different ways, thereby coding
for different end products. Lipids are important building blocks of membranes, but they may serve
also as signaling molecules. Reductionist investigation readily discovered their important role in
membranes, but a full characterization of their signaling function will require more global study

 

in vivo

 

. 
Not only can the same components have different functions, most of the important cellular

control systems also exhibit considerable redundancy, where particular functions can be accom-
plished by alternative sets of components. As a consequence, experiments knocking out one
component at a time may never reveal the underlying control structure. Complicating the situation
even further, biological systems have stochastic features, which may, for instance, be caused by
small numbers of molecules and their spatial dispersion throughout the cell. This stochasticity is
difficult to grasp intuitively and mathematically and seriously confounds predictability. There is no
doubt that biological networks are structured and regulated in more complex ways than man-made
systems and daunting both in size and complexity. 

Third, the interactions within biological systems are seldom linear, with the consequence that
increasing an input does not necessarily evoke a similarly increasing output. In linear chains of
causes and effects, we easily predict the response to a perturbation, but this is not so in nonlinear
networks. Increases in substrate lead to faster growth and higher yield in a microbial population,
but only to a point. It is very difficult to predict the threshold where this monotonic direct relationship
ceases to hold. Only a small difference in sun exposure changes a tan into sunburn. Unaided by
mathematical and computational analysis, we even have difficulties reliably to predict the effects
of simple feedback inhibition, which is one of the ubiquitous mechanisms in biological regulation
[46]. It is similarly difficult to assess the advantages of inhibition of product formation as opposed
to activation of its degradation, or the advantages or disadvantages of different types of gene
regulation in a given situation [5].

As a specific example, consider the simple pathway in Figure 2.1, which illustrates an
unbranched pathway with regulation [47]. The initial substrate 

 

X

 

0

 

 is converted into 

 

X

 

1

 

 and then
into 

 

X

 

2

 

, which is removed from the system. The concentration of 

 

X

 

0

 

 is maintained outside of the
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illustrated system. The conversion of 

 

X

 

0

 

 to 

 

X

 

1

 

 is inhibited by 

 

X

 

2

 

. The conversion to 

 

X

 

2 

 

is unregulated
and depends only on the concentration of 

 

X

 

1

 

. The degradation of 

 

X

 

2

 

 and its removal from the system
are inhibited by both 

 

X

 

1

 

 and 

 

X

 

2

 

. While apparently rather simple, it is difficult to predict how the
system would respond to slight perturbations, for instance, in the level of 

 

X

 

0

 

. Indeed, this is not
merely a matter of purely thinking hard, but depends on the numerical characteristics of the involved
processes. In the illustrative numerical set-up of [47], the responses of the system are dramatically
affected by the amount of material flowing into the system. For 

 

X

 

0

 

 = 2, the system approaches a
steady state in a simple, almost monotonic fashion (Figure 2.2a). By decreasing the input (for
instance, 

 

X

 

0

 

 = 1.2 or 

 

X

 

0

 

 = 1.05), the system starts behaving differently, exhibiting damped oscilla-
tions (Figure 2.2 [b and c]). If the input value drops below one, the steady state of the system is
no longer stable, and the unstable state is surrounded by a stable limit cycle oscillation (Figure 2.2d).
Theory shows that even a minute change in 

 

X

 

0

 

 from above one to below one renders the steady
state unstable and leads to the emergence of a limit cycle that simply did not exist before. 

Following Caesar’s motto to divide and conquer, we are trained to apportion big problems into
manageable tasks, and this strategy is quite successful if the system is linear. However, for nonlinear
processes, subdivision into subsystems becomes problematic when important structural or func-
tional connections are disrupted in the dissection process. Similarly, much can be learned from
isolating a cellular structure and studying its features, but as the introduction or extinction of a
species in an ecosystem has far-reaching consequences that are difficult to predict, it is hard to
make reliable prognoses of what would happen if this cellular structure were changed or missing
in the living cell. Thus, a complete understanding of the function of molecules or cellular structures
can seldom be achieved by a reductionist analysis alone. In addition to characterizing the properties
of cellular features, an integrated analysis that addresses the functioning of these features in their
natural contexts is needed. This type of integrated analysis is at the heart of systems biology.

 

FIGURE 2.1

 

Simple linear pathway with several inhibitory signals that make predictions difficult.

 

FIGURE 2.2

 

Time courses of 

 

X

 

1

 

 (solid) and 

 

X

 

2

 

 (dotted) for different values of 

 

X

 

0

 

 (a: 2.0, b: 1.2, c: 1.05, d: 0.95). 
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2.5 RECONSTRUCTION

 

The paradigm shift from reductionism to a systems approach does not mean that well-controlled

 

in vitro 

 

experiments should be abandoned. Quite the opposite is true. Only if we are equipped with
detailed knowledge about the constituents of a cell is it possible to assemble them functionally in
an adequate systems description. This step of assembling obtained details through reductionist
experiments has been coined 

 

reconstructionism

 

 [48] and is a central component of systems biology. 
Having discussed the virtues and shortcomings of reductionism and the emergence of systems

thinking as a necessary complement, we should return to the question of what understanding means
in the new context of systems biology. Clearly, the Egyptians had some understanding of bread
and beer making, yet it did not even include the main player, yeast. The concept of understanding
in modern systems biology implies knowledge of all components that contribute to a biological
phenomenon, of all processes and interactions that govern the dynamics of this phenomenon, and
beyond this knowledge an explanation of why a structure is organized in a particular fashion or
why a particular process is operated in a particular manner and not in an alternative manner that
could, at first glance, satisfies the same needs. 

As a specific example, we need to understand why some genes are regulated through repressors
and others through activators, or why in some metabolic systems the production of a metabolite is
inhibited and in other systems the degradation is activated. In these alternative situations, the same
primary effect is accomplished: a gene is activated when needed, or the metabolite level is decreased
if it is in excess. However, systems analysis shows that these alternatives differ in other respects,
such as response times or sensitivity to perturbations. This type of understanding addresses the
rationale behind the design and operation of organisms and is hoped to lead to deeply rooted,
general rules governing life. Savageau pioneered this search for design principles and, among other
accomplishments, developed 

 

Demand Theory

 

, a theory that very generally explains modes of gene
regulation, based on an organism’s natural environment [49,50]. Similar methods led to the eluci-
dation of metabolic pathway design, both in idealized generic pathway structures [51–55] and in
specific, observed pathways [56]. A thorough understanding of such cellular design rules is a
prerequisite for any rational engineering of cells [57].

For another example, consider a knockout experiment that eliminates the function of a gene.
As the first case, suppose the organism is not viable. Is this gene the “life” gene? In some sense,
the answer is yes, even though we may hesitate to assign such an important label, as we would
also not claim that a light switch is the cause of electricity to lighten up the room. While the
example is crass, this argument has been used to hail genes as “breast cancer genes” or “Alzheimer
genes.” It is clear that many genes, transcription factors, enzymes, and metabolites need to operate
in a well-orchestrated effort to fulfill a physiological need and that any disruption of significance
can cause malfunctioning. Expressed differently, the role of each component is embedded in a
regulated network of processes, and this role needs to be assessed by studying the entire network
with methods of systems analysis. The second case is even more difficult to address with reductionist
methods. Imagine that the knockout has no visible effect whatsoever. Does this imply that the gene
is not needed? In some cases, the gene may only be expressed in very specific situations that may
be rare, but if they occur, lead to lethality without the availability of the gene. In other cases, the
gene may code for a redundant process. Is it therefore superfluous? According to purely reductionist
argumentation, the answer must be yes, whereas a systems approach would assess its contribution
to the overall robustness of the organism under different perturbations. A specific example of such
redundancy is the transduction of signals, for instance, through the mitogen-activated protein (MAP)
kinase pathway. This pathway consists of dozens of components, and about any single deletion is
ineffectual. Nonetheless, evolution and preservation of the pathway structure indicates that it must
be advantageous over simpler designs. Only a comparative systems analysis will be able to quantify
these advantages.
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Redundancy is probably the rule rather than the exception in natural designs. In a recent study
[56], we analyzed the regulation of the trehalose pathway in yeast, comparing models that included
observed control signals with hypothetical models that were otherwise equivalent but did not possess
one or more signals. We found that every regulatory signal contributes to the performance of the
pathway under different natural conditions with a slight benefit. Each signal could be deleted, and
according to the model, the cells would be able to survive without much problem. However, deletion
of all control signals simultaneously led to much inferior performance.

Analyses of these types address the fundamental principles with which cells and organisms are
designed and operated. Once we understand these principles, we will not only be able to explain
an observed system, but to make predictions about the consequences of alterations. An expert in
mechanical engineering can look at a new pulley system and quickly figure out why it is designed
in a particular fashion. Similarly, by studying the functional and regulatory modules of natural
systems we will one day be able to explain the workings of newly investigated organisms and even
to construct new organisms according to desired specifications. Reaching this point is the dream
of systems biology. 

 

2.6 GOALS OF SYSTEMS BIOLOGY

 

The core belief of systems biology is that the biological components at every level of organization
we investigate interact with each other and thereby may lead to responses or properties that are
not explainable by the study of components in isolation or at only one level. Its premier goal is to
capture these “emerging properties” and to understand how they arise, why they are implemented
in the cell or organism, and what consequences ensue if they are altered, be it physiologically,
pathologically, or for biotechnological purposes. This is a challenging goal, and according to
Wolkenhauer [10], today’s systems biology is in a situation comparable to half a century ago, when
engineers were expected to analyze and control complex dynamical systems for which empirical
means were insufficient.

Once we have reached this level of understanding, we will be able to give substantive expla-
nations of observed functional modules and entire biological systems and predict how alterations
would affect the function and responses of systems. In the next step, we will use these predictions
to manipulate and optimize organisms in a desired fashion, be it for medical treatment, biotechno-
logical production of organics, the creation of pest-resistant crops and live stock, or the preservation
of endangered species. Ultimately, the insights may be sufficient to formulate a theory of biology,
which would have the same predictive and explanatory power of theories in physics and mathe-
matics. This theory would not simply be a fantastic achievement of the human mind, but have
consequences for our daily lives that are unimaginable now. As the famous mathematician David
Hilbert allegedly said, there is nothing more practical than a good theory.

To pursue these goals, systems biology uses two strategies that need to be integrated: one is
experimental, the other mathematical, utilizing analytical and computational tools [58]. As Ideker
et al. [59] summarized it, “systems biology studies biological systems by systematically perturbing
them (biologically, genetically, or chemically); monitoring the gene, protein, and informational
pathway responses; integrating these data; and ultimately, formulating mathematical models that
describe the structure of the system and its response to individual perturbations.” A good review
of recent trends and successes was recently presented by Yao [60].

While the main purpose of this chapter is the review of a particularly powerful computational
framework for systems modeling, it is useful to discuss briefly what kinds of experimental data
are being produced right now or are to be expected in the near future. The distinguishing feature
between traditional reductionist and systems-oriented experimentation is that the latter aims at high
throughput with the ultimate aim of completeness. While traditional investigations might have
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targeted one particular gene, protein, or metabolite, system biology attempts to assess the expression
of most or all genes of an organism simultaneously. It strives at characterizing the existence and
quantities of all proteins in a diseased state and comparing this profile with the corresponding
normal state. It would like to establish snapshots of all metabolites and their quantities at a given
point in time. It would like to discover all connections within a complete transcription factor network
and identify all physiological interactions between proteins within a cell.

The types of experimental techniques that can yield comprehensive information are the object
of intense investigation. In terms of genome research, the dominant approaches use various types
of DNA or RNA arrays, which quantify the expression of many genes under some treatment of
interest relative to the expression in a control. If the experiment is performed as one snapshot, the
data are analyzed with statistical means, such as cluster analysis or principle component analysis,
which tease out significant differences in the expression patterns and show which genes show
similar patterns of expression. Because the majority of genes are not yet annotated, strong expression
of an unknown gene may trigger the subsequent search for its function. From a true systems point
of view, gene arrays become more interesting if taken in time series. We will discuss the analysis of
such time series later.

Gene expression is often somewhat removed from the real physiological action, because it is
well known that many transcripts are secondarily modified. Furthermore, one cannot expect a one-
to-one relationship in quantity between transcribed DNA and protein quantity. Thus, even if gene
expression is known, it is only an indirect indication of the physiological response of the cell.
Proteomics tries to fill this gap. By measuring which proteins are present and in what quantities,
it is hoped that the active state of the cell is much better characterized. Experimentally, this is
typically accomplished with two-dimensional (2D) gel electrophoresis, which separates proteins
by charge in one dimension and mass in the other. The result is a 2D spot picture, where ideally
each spot shows the presence of a particular protein with its relative quantity and modification
state. Subsequent mass spectrometry and a comparison with information from protein databases
determine which protein corresponds to each spot of interest. Again, a single snapshot does not
reveal much about the physiological state of the cell. A comparison between treatment and control
indicates which proteins are affected by the treatment, but more information can be deduced if the
measurements are executed as time series.

Radioactive labeling has been used in biological research for a long time. Systems biology
makes use of a sophisticated variant, called isotopomer analysis [61,62]. In this method, a specif-
ically labeled precursor is made available to the cell; typical examples are carbon-labeled glucose
molecules that carry label exclusively in the C1 position, C6 position, or on all carbon atoms. By
measuring the labeling state of downstream metabolites, such as glycolytic hexoses and trioses and
metabolites of the tricarboxylic cycle, it is possible to determine 

 

in vivo

 

 how hexoses are cleaved
and how much flux is diverted into different pathways at branch points. At present, the system is
analyzed once it has reached a steady state, from which the flux distribution is computed. However,
dynamic measurements and analyses in the future will allow the deduction of much more infor-
mation, for instance, about the regulation of the pathway.

Metabolic profiling is fast moving onto the stage of systems biology. Currently, several methods
are being explored in parallel. Most developed are mass spectrometry and nuclear magnetic reso-
nance, but other methods include tissue array analysis and phosphorylation of protein kinases.
These techniques have in common that they allow simultaneous measurements of multiple metab-
olites. Presently, they are in their infancy and typically limited to snapshots of a large number of
metabolites at one time point [63,64] or to short time series measuring a relatively small number
of metabolites [65–67]. However, it is almost certain that these methods will soon be extended to
relatively dense time series of many concentration or protein expression values [68]. The intriguing
aspect of these profiles is that they implicitly contain information about the dynamics and regulation
of the pathway or network from which the data were obtained. The challenge for the mathematical
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modeler is thus to develop methods that extract this information and lead to insights about the
underlying pathway or network. We will discuss such analyses later.

 

2.6.1 M

 

ODELING

 

 A

 

PPROACHES

 

By now, it should have become clear that mathematics and computational methods are needed for
analyzing biological systems of realistic size. The question thus shifts toward the search for the
most useful mathematical tools. What is useful in this context is determined by the questions to
be asked. To identify the best tools, it is useful to summarize specifically the demands of systems
biology. The first is the need for mathematical structures that capture the dynamics of systems with
potentially large numbers of components. Since we are interested in dynamic responses, suitable
network models will have to be time dependent, which will almost always require differential
equations. The second is the complexity and nonlinearity of processes and interactions. There are
no general guidelines as to what constitutes good model structures, but the choice of a modeling
framework has to ensure that it does not 

 

a priori 

 

exclude relevant phenomena, such as damped
oscillations or limit cycles. The third is the ability to scale biomathematical models so that they
can address issues of real relevance. Of course, one can always add more equations, but the question
becomes whether the analytical and diagnostic tools are able to handle increasingly larger models.
The fourth is the allowance for both deterministic and stochastic phenomena. In most cases,
deterministic systems are more tractable, for instance, with ordinary differential equations, but there
are obvious situations where stochastic effects dominate a phenomenon. An example is the dynamics
of systems with very few molecules, where the fundamental laws of kinetics and thermodynamics
are no longer applicable. The fifth necessary tool is an efficient handling for spatial processes.
Again, if possible, one will try to avoid spatial effects, because they require incomparably more
difficult partial, rather than ordinary, differential equations. Nonetheless, if the subject of study is
a diffusion process, one will be hard-pressed not to acknowledge explicitly its spatial nature.
Mathematics and engineering have been working on these fronts for a long time, and it is the task
of systems biology to adapt these methods, extend and refine them, and develop additional tools
that are specifically suited for handling the peculiarities of biological phenomena, such as properties
that only emerge at the systems level, but are not existent in any of the components.

Because biological systems are so complex, an important task of systems biology is to determine
to what degree simplifications and approximations are valid in the development of representations
for biological systems. This task is a challenge in itself, because, first, the true functions are not
known and can therefore not be evaluated against any approximate representations, and, second,
our knowledge of biological details, while growing rapidly, will probably never be sufficiently
complete to allow comprehensive parameter estimations of all processes and interactions in a large
system. Much has been written about the virtues and problems of abstraction and of omitting
detail — the paradigm being the butterfly flapping its wings in Beijing, and thereby directly or
indirectly, ever so slightly, affecting everything else in the world.

Simplifications are suggested by nature in several forms [55]. First, many systems are con-
structed in a modular form. Organisms consist of cells, and while these communicate, they constitute
identifiable entities that often allow investigation in the absence of surrounding tissues, vascular-
ization, and means of communication. Often, these modules are associated with spatially identifiable
compartments, and it may be valid to isolate these compartments and study their features. The
modules may also be functional, such as in the case of hormonal communication. Bacterial genomes
are organized in operons, and for some purposes, it may be useful to consider these as building
blocks, while ignoring their structural and functional details. It is well acknowledged that metab-
olism is a multidimensional phenomenon and representations like the Boehringer wall map are
merely cartoons. Nonetheless, it may be useful for specific studies to group metabolites in pathways.
For instance, in the context of signaling in yeast in response to stress conditions such as heat, it
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might be sufficient to note that the trehalose pathway is activated and the Ras–cAMP–PKA pathway
is downregulated [69] and to ignore details at the level of specific enzymes and reactions.

Second, every process has its time scale, and if a process tangential to the one of interest is
very slow, it may validly be considered constant. For instance, aging can likely be ignored in an
investigation of pathways of amino acid synthesis. Finally, many metabolites are kept rather constant
through a variety of homeostatic mechanisms. This relative constancy may allow a model to consider
some of the metabolites as true constants, thereby simplifying the mathematics of its analysis.

 Precursors of systems biology have been utilizing these simplifications throughout the short
history of mathematical modeling and for systems analysis in engineering. Most notably, engineers
have successfully employed linear systems theory for a long time because of its unmatched
mathematical and computational tractability. Linear system theory applies to a special class of
systems that are homogeneous and additive — two properties that have important consequences,
as a simple example may demonstrate. Consider a system with a single input and output where the
input is determined external to the system and the response of the system is observed at the output
when this input is applied. If one doubles the magnitude of the input and observes a doubling of
the output, the system is said to be homogeneous. Now consider two different input signals added
together and applied to the system. If the system is also additive, the output for this sum will be
equal to the sum of the outputs for each signal applied independently. When systems obey these
two properties they are said to be linear and obey the principle of superposition. Often, linear
systems are also found to be time invariant (or shift invariant) and so applying the input signal
tomorrow yields the same response as it did when applied yesterday. Linear time-invariant systems
obeying these properties satisfy the following equation

(2.1)

for constants 

 

c

 

1

 

 and 

 

c

 

2

 

, input functions and , and system response This property has
enormous implications for the applicability of linear systems theory, because if we decompose any
input into a linear combination of a set of known functions, we can determine the output simply
by knowing the response for each function in the set. Analyzing the response of the system to a
complicated input can thus be decomposed into the analysis of its response to a series of simpler
functions. If closed-form solutions for the response to these simpler functions exist, it is possible
to develop closed-form solutions for arbitrarily complicated inputs decomposed in this way. Clearly,
the advantages of having systems that demonstrate these properties are great and a comparable
theory for biological systems would clearly be very useful.

Unfortunately, with notable exceptions, as shown below, biological systems rarely meet the
criteria needed to exploit the methods of linear system theory due to their genuine nonlinear nature.
In engineering, many systems are also nonlinear but have linear regions in which the system can
be designed to operate. This is not often the case in biology, and so we are forced to consider
approaches that offer at least some of the benefits of linear systems theory within the realities of
the nonlinear nature of biological or biochemical systems.

A prominent example of the usefulness and power of a linear approach to a biochemical
phenomenon is the distribution of metabolic fluxes throughout a cell. By coding each metabolite
as a node and each possible flux as an edge, metabolism can be seen as a directed graph that can
be represented as a big adjacency matrix, as will be discussed in more detail later. This matrix
forms the core of a dynamical equation that describes the flow of material through the metabolic
system

(2.2)
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where 

 

X

 

 is the vector of all metabolite concentrations, 

 

S

 

 is called the 

 

stoichiometric matrix,

 

 and 

 

v

 

is the vector of all fluxes. If the system is in a steady state, where the influxes and effluxes at every
node are in balance, the left-hand side of the stoichiometric equation equals zero, and the analysis
reduces to a straightforward task of linear algebra, which is easily scaled up to systems of potentially
very large size [70,71]. For instance, the rank of the stoichiometry matrix, which is easily computed
with standard methods of linear algebra, is a reflection of conservation relationships between
metabolites at steady state [72,73]. In other words, the rank signifies how many reactions are
actually linearly independent. Typical analyses of stoichiometric systems address possible pathways
leading from a given substrate to a desired product [74,75], the consequences of knockouts, and
questions of optimal flux distributions, which are either reached through natural evolution or through
biotechnological manipulation.

Adding linear physicochemical constraints to the stoichiometric equation, Palsson and others
proposed an approach to analyzing metabolic networks, which is called 

 

flux balance analysis

 

 (FBA)
[76,77]. Whereas the stoichiometric equations alone typically allow for a large space of possible
solutions, which are mathematically but biologically unrealistic, FBA limits this space to realizable
results. Still, many solutions are usually possible, and one strategy of FBA is to find a solution that
is optimal, for instance, with respect to biomass production [78]. Another use of such models is to
detect gaps in our metabolic understanding in terms of missing fluxes and the identification of
genes that might code for enzymes in such fluxes [79].

Stoichiometric approaches focus on the topology of the metabolic systems and record the
distribution of fluxes. Even if constrained, they ignore processes such as diffusion and convection,
as well as most kinetic details [73] and do not truly account for regulatory signals, which would
necessarily lead to nonlinearities and thereby destroy the advantages gained by the stoichiometric
matrix representation. Thus, if such kinetic or regulatory details are known, they cannot be used
and important information is lost. While this is a genuine problem with stoichiometric models, we
will show in the following section that it is possible to design models that account for essential
nonlinearities, while still retaining some advantages of linear mathematics.

A first attempt of combining stoichiometry with kinetic features would probably be to replace
the simple flux quantities with traditional nonlinear rate functions, such as the famous
Michaelis–Menten rate law. The advantages and shortcomings of this rate law have been discussed
elsewhere [80–82], and it suffices to mention here that the result of such a strategy leads to
mathematical models that are very difficult to analyze. One could argue that modern computing
power should be able to solve systems of nonlinear equations in reasonable time and therefore to
permit simulation studies. Indeed, over 30 yr ago, Garfinkel [83] and others began constructing
such computer models. However, even though the numerical computation of a particular model is
usually not an issue, the simulation strategy alone does not provide the types of insight systems
biology is interested in. As Heinrich and Rapoport [84] eloquently remarked on this topic, simu-
lations present several problems. First, the output of a simulation does not easily identify which
factors and processes are important and which are not. Second, the genesis of responses in a complex
system is difficult to extract. Third, simulations require many 

 

ad hoc 

 

assumptions about processes
and their parameter values, which are difficult to support by experimental data, and the simulations
themselves do not always tell how weakly or strongly these assumptions may affect the computed
outcome. As an example, one should consult Schulz’s book [85], which details features of kinetic
rate processes and shows how dramatically different the mathematical representations are, depend-
ing on which mechanism one supposes. In an overall evaluation of simulation models, Heinrich
and Rapoport [84], as well as others, therefore strongly recommend striving for mathematical
models that permit analytical evaluations, in addition to computational simulations. In contrast to

 

ad hoc 

 

models, such as those based on traditional kinetic rate laws, the desired brand of models
should have a homogeneous structure that is more or less size independent and therefore allows
the same types of analyses and diagnostics, no matter how large the model is. We will introduce
such 

 

canonical models

 

 in the next section.
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As an example of the type of problem one may encounter with simulation models, consider a
moderate-scale model of the tricarboxylic acid (TCA) cycle in the slime mold 

 

Dictyostelium
discoideum

 

 [86]. The authors had collected an enormous amount of kinetic information from the
literature and used it to construct a very detailed kinetic model in the tradition of Michaelis–Menten
rate laws. The fact that the reactions were expressed as rational functions precluded the authors
from executing algebraic analyses and restricted their investigations to computer simulations. The
model actually represented many aspects of the TCA cycle well, but some conclusions of the
simulation analysis were later shown to be faulty, because an unexpectedly large range in time
scales among the governing processes masked some of the model’s slow dynamics [87]. Of note
is that the root cause of the problem was not the size of the system, but rather the inconvenient
mathematical nature of the rational functions, which did not allow application of the mathematical
diagnostic tools available for linear systems or the canonical models described in the next section. 

 

2.7 BIOCHEMICAL SYSTEMS THEORY

 

Faced with the issues discussed in the previous sections, Savageau suggested, in the late 1960s, a
theoretical framework that combines some of the convenient features of linear systems with the
ability to capture the essence of nonlinear phenomena and was coined 

 

biochemical systems theory

 

(BST; [88–90]). The following sections describe this theory and its applications, but before we get
lost in detail, it is useful to preview in a nutshell why this theory is so particularly useful. The main
ingredient of the theory is a power-law approximation of all rate processes in a system of differential
equations. This approximation is nonlinear and, even though it is simple as a single individual term,
can model essentially any continuous nonlinearity, if it is combined through sums and differences
with other power-law terms of the dynamical model [91]. The particularly useful form of an
S-system is based on a second crucial ingredient. Instead of individually approximating each
reaction that is entering or leaving a metabolite pool with one power-law function, all fluxes entering
a pool are first aggregated, and the aggregate is represented by a single power-law term, and the
same is done for all fluxes leaving a pool. Thus, whether each pool in the system has one or many
production fluxes and one or more consumption fluxes, each equation of the describing S-system
contains exactly two terms, which are both power-law functions. As we will see later, this has the
unique advantage that the steady state of such a system is characterized by linear algebraic equations,
for which there exists an enormous repertoire of analytical methods. Furthermore, this system
design and the feature of linearity at steady state are true for systems with any number of compo-
nents, which is enormously important for the scaling to biological phenomena of realistic size. 

As an alternative to the S-system form, the fluxes may not be aggregated. In this case, each
reaction is approximated individually with a power-law term, and these terms are added together,
with a plus sign for incoming fluxes and a minus sign for outgoing fluxes. This alternative
construction may thus have any number of terms and is called a general mass action (GMA) system.
Because these model representations always have the same structure and therefore allow a stream-
lined repertoire of methods for design and analysis, they are called canonical models [91,92]. Other
canonical models, whose structure is size independent, are linear systems, Lotka–Volterra systems
(e.g., Peschel and Mende, 1986), and generalized Lotka–Volterra systems (Hernández-Bermejo and
Fairén, 1996). Some historical remarks on the early development of BST, S-systems, and GMA
systems can be found in Savageau (1991).

2.7.1 REPRESENTATION OF REACTION NETWORKS

Biochemical systems are formed from pathways and interactions of linked reactions. The enzymes,
metabolites, and cofactors appearing in one reaction often appear in other reactions, thereby creating
a complex network of mass fluxes and regulatory signals. To build models using BST, we must
first understand how to transform these networks into systems of differential equations describing
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the network’s behavior. First, consider a simple reaction that produces a molecule of metabolite P
from substrate S. The process is discrete in that one molecule of P is produced for each molecule
of S completing the process, but for large numbers of molecules, we can use averages and formulate
continuous processes based on “rates.” The rate at which P is produced and the rate at which S is
degraded are linked and we can formally describe this relationship with ordinary differential
equations. If the reaction occurs at a rate of v conversions per second, the rate at which molecules
of S are used up is v, and the rate at which molecules of P are produced is also v. 

In many reactions, the process is more complicated in that other metabolites or cofactors are
required for the reaction to proceed. As a simple example, let molecule C be the product of a
reaction that requires one molecule of substance A and one molecule of substance B. Both A and
B must be present in order for this reaction to proceed. Again, if the reaction occurs at a rate of v
conversions per second, one molecule of A and one molecule of B are used and one molecule of
C is produced every 1/v sec. The rate of change of A and B is –v and the rate of change of C is v.
This model must account for the situation that more than one molecule of each substance is either
consumed or produced in the reaction. The specific proportion in which a reactant or product
participates in a reaction is called its stoichiometry. For example, let two molecules of A and three
molecules of B produce a single molecule of C at a rate of v conversions per second. Under these
conditions, the reaction consumes molecules of A at 2 · v per second, molecules of B at 3 · v per
second and produces molecules of C at 1 · v per second. Thus, one can easily design equations for
these simple reactions describing the time rate of change of the reactants and products from the
stoichiometry and the rate of advancement of the reaction. We have yet to discuss how we might
describe v and will return to that subject later.

In biological systems, reactants, products, and cofactors seldom participate in only one reaction
and so their dynamic behavior is determined by the contributions of many reactions that form a
network. Consider the network illustrated in Figure 2.3. It consists of five metabolites, generically
referred to as species, and three reactions. Species A is consumed to produce species B in the first
reaction and B is converted to either C or D in subsequent reactions resulting in a branch in the
pathway. The conversion of B to D also involves two molecules of substance E that are modified
in the reaction to form two molecules of substance F. We let the rates for the reactions be vA,B for
the reaction producing B from A, vB,D for the reaction producing D from B, and vB,C for the reaction
producing C from B. Using the reaction rates and stoichiometry of this network, we can easily
construct the set of differential equations that describes the behavior of this system. For each species
appearing in the model, we first identify all reactions in which that species participates. If the
species participates as a reactant, we include a negative term formed from the multiplication of the
species’ stoichiometry and the rate of the associated reaction. These terms take a negative sign as
they represent reactions where the species is being used up or consumed. If the species participates
as a product, the term is formed similarly but takes a positive sign, indicating that the reaction
produces that species. Combining these results we write the system of differential equations as
follows.

FIGURE 2.3 Example of a simple pathway consisting of six species A, B, C, D, E, and F and three reactions
with rates vA,B, vB,C, and vB,D. The branch at B shows two independent paths by which B is degraded. The
degradation of B to C requires two molecules of E, which are consumed in the process to produce a molecule
of F (e.g., ATP to ADP).
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(2.3)

For large networks, it becomes convenient to use a more compact notation based on linear
algebra. In the above-mentioned system of equations, for instance, the reaction rates for the three
different reactions are used in linear combinations to form expressions for the rate of change for
each of the five species. The coefficients of these linear combinations are supplied by the stoichi-
ometry of the reactions. For a tighter representation, it is also necessary to generalize the naming
of metabolites and use, instead of intuitive names for the species (e.g., A, B, C, or, Glu, ATP,
NADH, PK), the more generic Xi and assign each species to an index in this naming (e.g., X1 ↔
Glu, X2 ↔ ATP). As suggested in an earlier section, we can then organize this as a matrix-vector
product where X is the vector of all species appearing in the model, S is a matrix giving the
stoichiometry of the system, and v is a vector of the reaction advancement rates. Thus, the previous
system becomes 

(2.4)

This, in turn, may be compactly written as dX/dt = S · v.
The stoichiometries of the reactions appear as columns of the S matrix where the (i,j)th entry

of the matrix contains the stoichiometry of the ith species in the jth reaction. If the species participates
in the reaction as a reactant, the entry is negative and if as a product, the entry is positive. The
utility of this more compact form will be evident throughout the following sections.

2.7.2 RATE LAWS

Clearly, the reaction rates are key to the behavior of the system and so we now begin to investigate
the functional forms used to represent the relationship between these rates and associated products,
reactants, and cofactors. The rate at which a reaction proceeds is obviously dependent on the
availability of the species participating in the reaction. In the earlier example, the reaction producing
P from S can occur only if molecules of S are available and it is reasonably expected to occur more
rapidly with larger supplies of S. In biochemical systems, many of the reactions of interest are
catalyzed by enzymes, involve more than one metabolite or cofactor, and may be inhibited or
activated by additional cofactors, metabolites, or proteins. As a result, the rate of a given reaction
may depend not only on the supply of substrate to be converted but also on the current quantity
of many other species. In the most general case we write the reaction rate of the ith reaction as vi =
Vi(X) = Vi (X1, X2, X3, …, Xn), which may depend on the current availability of some or every
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species in the system. Many functional forms of have been proposed, but the most prevalent
are formulations based on mass-action kinetics, enzymatic rate laws, and power laws. BST is based
purely on the power-law form, but since the other forms are widely applied, an understanding of
the relationships between the alternative forms is an essential part of model building using BST.

2.7.2.1 Mass Action Kinetics

Models based on mass-action kinetics are typically used to simulate reaction networks consisting
of elementary reactions. Consider the reaction scheme for the simple enzyme-catalyzed reaction
shown in Figure 2.4. In this example, substrate S is transformed into product P with the aid of
enzyme E through elementary steps. The first step forms, from substrate S and enzyme E, a complex
ES, which through a reverse reaction may decompose to S and E. In the second step, the product
dissociates from the enzyme to yield product P and the free enzyme E. The reaction rate in each
of these steps is determined by the participating reactants and their stoichiometry and is given in
the form of a product of power functions. In general, this rate is written as
where k is a positive constant called the rate constant and gi are positive integers called kinetic
orders that reflect the stoichiometry of the reaction. For example, in the reaction 2A + 3B → C,
the rate would be given as v = k · A2 · B3 where A appears in the second power because two
molecules of A are required in the reaction and B appears in the third power because three molecules
of B are required. For the enzyme-catalyzed reaction described above, all steps require one molecule
of each type involved, and the system of equations is therefore be given as 

(2.5)

where all nonzero kinetic orders are equal to 1. Models based on mass-action kinetics have the
advantage of being determined directly from the elemental reactions and their stoichiometry. They
suffer, however, from the fact that a large number of rate constants must be determined in order
to implement the model. In many cases, these elemental reactions are not experimentally observable
and the parameters would thus be difficult to acquire.

2.7.2.2 Michaelis–Menten Rate Law

Enzyme-catalyzed reactions in biochemical systems are often effectively modeled using rate laws
representing the net flux through a collection of elementary reactions as modeled in Equation 2.5.
The best known of these is the Michaelis–Menten rate law [93], which can be derived from the
mass-action model described above under assumptions regarding the steady-state behavior of the
complexes and the ratio of substrate and enzyme concentration. The resulting law gives a nonlinear
relationship between the quantity of available substrate and the reaction rate and is illustrated in
Figure 2.5a. The rate law is defined by two parameters, and Km, that give the saturating rate
of the reaction and the substrate quantity at which half of this maximum rate is achieved. Thus,

FIGURE 2.4 Reaction scheme for an enzyme-catalyzed reaction converting substrate S to product P with the
aid of enzyme E. The first step involves a reversible reaction, with forward and reverse rate constants k1 and
k2, that forms complex ES. The process is completed in an irreversible reaction where the complex decomposes
into enzyme E and product P, with rate constant k3.
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there were originally three rate constants in the mass-action model described above, which have
been replaced by two parameters in the rate-law model. While this model is supported by many in
vitro experiments, it does not account for possible inhibiting effects of available product or revers-
ibility, which constitute realistic situations in biochemical systems in vivo. The reversible form of
the Michaelis–Menten rate law [94], derived through similar assumptions, accounts for this effect
and is illustrated in Figure 2.5b. Examining this equation, we see that as the quantity of product P
goes to 0, the equation simplifies to the original Michaelis–Menten rate law, as one would expect.
As the product quantity, relative to substrate, approaches the equilibrium constant Keq, the reaction
rate approaches 0 and then becomes negative as the quantity of product increases further. As
expected, the flux goes to 0 at the substrate–product ratio given by the equilibrium constant and
reverses on either side of this point. Another commonly employed rate law, originally proposed by
Hill [95], considers enzymes with multiple binding sites that are identical and cooperative. Coop-
erative binding occurs when a ligand binding to one of several identical binding sites on an enzyme
increases (positive cooperativity) or decreases (negative cooperativity) the affinity for ligands at
the unbound sites. Under these assumptions, the rate vs. substrate concentration follows a sigmoidal
shape (Figure 2.5c) that was originally observed in oxygen-binding curves of hemoglobin. The
parameter h is called the Hill coefficient and is a measure of the cooperativity of the binding of
enzyme and its ligands. These are just three representatives of a wide range of rate laws that have
been proposed, and we shall use these as examples in subsequent discussions.

2.7.2.3 Power-Law Rate Laws 

Another form of rate-law, called a power law, forms the basis for BST [89]. Most biological reaction
rates, when plotted in a log–log graph against the reaction substrate, appear to have broad linear
regions (Figure 2.6). Thus, constructing a linear approximation to these functions in log space gives

FIGURE 2.5 (See color insert following page 150.) Examples of commonly used kinetic rate laws. Panels
A, B, and C give the functional form of the Michaelis–Menten, reversible Michaelis–Menten, and Hill rate
laws and graphs of reaction rate vs. substrate. The reversible Michaelis–Menten reaction schemes yield negative
rates when P/Keq > S.
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a suitable relationship of the form where g gives the slope of the line in the
linear region and a gives the y-intercept. When transformed back to Cartesian space, the relationship
follows a power law given by where the slope g gives the exponent for the substrate and
α = ea gives a scaling factor for the term. Realistically, the rate is often a function of more than
one species, and it is therefore of importance that the approach can be extended directly to two or
more variables. In this case, we need the approximation of a surface in log–log coordinates, which
is given by a plane (for two variables) or a hyperplane (for more than two variables) and takes the
mathematical form Transforming this back
to Cartesian coordinates yields a power law of the form . We recognize
this as the form of rate laws using mass action kinetics where α is the rate constant and gi are the
kinetic orders. In the power-law form of BST, however, kinetic orders are allowed to take fractional
or negative values, and gi therefore is more strictly referred to as the apparent kinetic order. The
gi are, nevertheless, often simply called kinetic orders in the literature when it is clear that the
discussion occurs in the context of a power-law model. 

The rationale for the power-law form of a rate law is intuitively reasonable, and it can also be
backed up with a strictly formal argument, based on a Taylor series approximation upon log–log
transformation. Any continuous, differentiable function can be written as an infinite series, called
a Taylor series [96], about a selected expansion point, which, for our purposes, is often referred to
as the operating point. Let be the functional representation of the log of the rate vs. the log
of the substrate. The Taylor series expansion of this function about the operating
point y0 = log(X0) and for y = log(X) is defined as

(2.6)

If f (·) is approximately linear in some region of interest, the second-order and higher derivatives
are nearly 0 and thus may be dropped from the expression, leaving f (y) = f (y0) + f ′(y0)(y – y0).
One also notes that in the area near the expansion point y0, the difference y – y0 is small and terms
containing (y – y0)n/n! become very small as n increases, providing further justification for dropping
higher-order terms from the series. Comparing these insights from Taylor expansion with comments

FIGURE 2.6 (See color insert following page 150.) Examples of kinetic rate laws plotted in logarithmic
coordinates. Nearly linear behavior is often found over wide ranges of substrate concentration. Linear regions
in logarithmic coordinates indicate power law behavior in linear coordinates.
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made before, we see that the slope g and intercept a of the power-law rate law can be obtained
from the function f (·), its first derivative f ′(·), and the selected operating point y0 to give a = f (y0) –
f ′(y0) · y0 and g = f ′(y0). Furthermore, this result is valid also for higher-dimensional systems with
any number of variables. A power-law rate expression is therefore equivalent to a first-order
approximation to an arbitrary rate equation written in logarithmic coordinates.

2.7.3 SOLUTIONS TO THE SYSTEM OF EQUATIONS

The rate laws discussed are linear if all fluxes are of constant magnitude. In all other cases, the
laws are nonlinear in the quantities of the species and, as a consequence, no closed-form solution
exists for the system of dynamic equations dX/dt = S · v or even for the steady-state equations
dX/dt = S · v = 0, except under fortuitous conditions. This restriction may be overcome in several
ways including simulation based on numerical integration, linearization in the original coordinate
system, and linearization in the logarithmic coordinate system.

2.7.3.1 Numerical Integration

We have seen that it is quite easy to compose equations describing the behavior of a biochemical
system, given the biochemical map, selected rate laws, and the associated parameters. The system
of equations, coupled with modern computing systems and algorithms for the numerical solution
of differential equations, gives us the opportunity to compute numerically the dynamic behavior of
the system from a given set of initial conditions. Unless the system is very large, this solution is
typically obtained rather quickly. However, while this strategy allows us to explore one trajectory
the system might take, it provides little to our understanding of the spectrum of all possible paths.
Different starting points may yield qualitatively different behaviors. The system may find a steady
state, enter a limit cycle, show damped oscillations, or become unstable. Without further analysis,
we would need to exhaust the space of possible initial conditions to determine, with reliability,
how the system could potentially behave. While simulation provides a valuable tool for the analysis
of the dynamic behavior of the system, by itself it does not provide the complete picture we seek.

2.7.3.2 Linearization 

As an alternative, we might consider forming a linear approximation of the system and use the
wealth of tools from linear system theory to analyze its behavior [97]. This is a valid strategy in
principle. However, as pointed out above, the rates and thus the differential equations describing
biological systems are usually nonlinear and thus a linear approximation would be applicable only
in a small region about the chosen operating point of the Taylor series expansion. Attempts to
explore the dynamic response or infer behavior from this approximation would be difficult unless
the system remained in a sufficiently small region about the operating point. Nevertheless, we will
see that linearization about a steady-state point actually provides us with valuable information
regarding the assessment of the system’s stability and robustness at that point. The specifics of this
assessment will be presented later.

2.7.3.3 Power-Law Approximation 

We have already seen that rate laws based on power functions correspond to first-order approxi-
mations to arbitrary rate laws in logarithmic coordinates. These power-law approximations capture
more of the nonlinear nature of the reaction rate than the linear approximation discussed previously.
Consider, for example, approximations to Michaelis–Menten, reversible Michaelis–Menten, and
Hill rate laws as shown in Figure 2.7. In each case, much of the curvature in the region about the
operating point is captured in the power-law approximation. Also as noted above, the apparent
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kinetic order for each of these reactions can be determined from the rate law by evaluating the first
derivative of the rate law in logarithmic coordinates at the selected operating point. While the
power-law approximation is quite close in a range around the operating point, one must caution
that this is not necessarily true for very large deviations. For instance, the power-law form does
not capture the saturating effect and ultimate approach of the maximal velocity Vmax found in the
Michaelis–Menten, reversible Michaelis–Menten, and Hill rate laws. Similarly, at this level of
approximation, the power-law representation does not exhibit the negative rates shown by the
reversible Michaelis–Menten rate law for substrate quantities below P/Keq. If these phenomena are
of specific interest, it is possible to represent the rate laws at a lower level, as it is given in
Equation 2.5, where the power-law representation is exactly equivalent over the entire domain of
concentrations. In most situations, however, the substrate concentrations do not vary that widely
in vivo, and the power-law approximation at the higher level is sufficient in accuracy.

Although it may appear from the description of these methods that they are mutually exclusive,
they are in fact all essential tools in the application of BST. Because the dynamic equations are
nonlinear, simulation by numerical integration is the only method by which the evolution of the
system over time can be determined and thus forms the foundation of dynamic analysis. As we
will describe next, linearization provides us with a method for the analytical assessment of the
system of equations at steady state, and, of course, power-law approximation is the mathematical
connection between BST models and other rate functions.

2.7.4 NONLINEAR CANONICAL MODELS IN BST

As with linear system theory, BST provides canonical forms describing a biological system. The
availability of a canonical representation provides significant advantages when the goals are the
development of mathematical theory and analytical and computational methods, because it allows
us to formulate results applicable to entire classes of problems, rather than ad hoc results that only
apply to a very specific function under a defined set of conditions. Several canonical forms are
possible within BST, but the most frequently used are GMA and S-systems.

FIGURE 2.7 (See color insert following page 150.) Power law approximations to the Michaelis–Menten,
reversible Michaelis–Menten, and Hill rate laws. The power law approximation fits the given rate law exactly
at the operating point and typically provides a good approximation to the rate law about that point.
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2.7.4.1 Generalized Mass Action Systems 

The GMA form is the most general of the canonical representations used in BST, and all other
forms (linear systems, S-systems, Lotka–Voltera systems, generalized Lotka-Voltera systems, and
half-systems or Riccati systems) are direct special cases of a GMA system. Returning to the general
system description in vector notation, dX/dt = S · v, the GMA representation requires that each rate
function be formulated as , where θk is the rate
constant and fk,1, …, fk,n are the apparent kinetic orders for species X1, …, Xn in the kth reaction.
The stoichiometric matrix S contains both positive and negative values corresponding to species
participating as either a reactant (negative value) or a product (positive value) in a given reaction. 

It is useful to group all of the positive values into one matrix S+ and the absolute value of the
negative values into another matrix S– such that S = S+ – S–. The matrix S+ now gives the stoichiometry
for the production of all species and the matrix S– gives the stoichiometry for the consumption of
all species. The differential equation for species Xi in a network of p reactions can then be written
as follows:

(2.7)

Combining the constants and θk into single terms γi,k yields the commonly used, general
form of a GMA system where the γi,k can take on positive and negative values corresponding to
production and consumption of Xi :

. (2.8)

This form is structurally very rich and general, because for integer fk,j, the system can represent
any multinomial and thus a multidimensional Taylor series approximation to any continuous and
differentiable rate law. We also see that models based on mass-action kinetics and linear models
are simply special cases of this GMA system.

2.7.4.2 S-Systems 

As in the development of the GMA form, we split the stoichiometric matrix naturally into a
difference of two terms, one associated with the production of a species and one associated with
its consumption, S = S+ – S–. For any species that is produced through only one reaction and
consumed through only one reaction, the summations in the GMA form have only one term each
and thus the differential equation immediately reduces to the difference of two products of power
functions. When a species appears at a branch where it is consumed (or produced) through
independent reactions, we can approximate the sum of rates for these parallel consumption (or
production) paths as a single product of power functions. As a consequence, the time rate of change
of a species can be written as the difference of just two power-laws, one representing the aggregated
production, or influx, of this species and one representing the aggregated consumption, or efflux,
of the species. In cases where the species is involved in none or only one production or consumption
pathway, the result is exactly the same as for the GMA form given above. In other cases, the two
forms are exactly equivalent at the chosen operating point, similar when close to this point, and
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diverge as the species deviate farther from the operating point. This form with one aggregated
production term and one aggregated consumption term is referred to as an S-system, where S
indicates the synergistic nature of this nonlinear form [89]. In mathematical notation, the result is

(2.9)

The parameters αi and βi are the positive rate constants for the influx and efflux terms and gi,j

and hi,j are the (apparent) kinetic orders for the effect of species Xj on the influx (g’s) and efflux
(h’s) of species Xi. If an increase in species Xj tends to increase the rate of production of Xi, the
parameter gi,j has a positive value. This might be the case if Xj is a reactant or activator in a process
that produces Xi. By contrast, if Xj inhibits the production of Xi then gi,j has a negative value, and
if Xj has no effect then gi,j has a value of zero. The relationship between the sign of the kinetic
order and the influence of one species on another species’ production or consumption is a valuable
characteristic of the GMA and S-system representations. It is a direct consequence of the fact that
each kinetic order gives the slope of the functional relationship between a production or consump-
tion rate and the quantity of a species when expressed in logarithmic coordinates. By examining
the kinetic orders, we can immediately determine the direction and magnitude of the influence of
one species on another.

One may ask why it is useful to explore two different forms within BST. Several answers can
be given, but maybe the most important is that the GMA form is closer to biochemical intuition,
because every process is modeled individually and therefore more easily identified in the equations
representing a biochemical map. However, the S-system form has unique and significant mathe-
matical advantages for analyses of the system in the neighborhood of its steady state, and these
analyses yield insight into the robustness of the mathematical model, as we shall discuss later. The
S-system form is also uniquely suited for optimization tasks and the identification of pathway
structure from experimental time course data.

Often, the Michaelis–Menten rate law and its extensions are accepted as “automatic defaults.”
This is understandable, because these rate laws have had a long and successful history, where many
experimental studies supported the mechanisms and functional forms of these rate laws in vitro.
However, many assumptions that are valid in vitro do not necessarily hold in vivo. For instance,
the rate expression for mass action kinetics, and thus by extension for the Michaelis–Menten
mechanism, assumes that the reactions occur in dilute, spatially homogeneous solutions. In living
cells, this assumption is not always appropriate, as reactions tend to occur on membranes, in
channels, or in complexes and thus result in dimensional restrictions that change the kinetic
properties of the reaction. Extensions of the Michaelis–Menten rate law, which, to some degree,
account for these effects lead to fractal mass-action kinetics and other functions that are much more
complicated than the traditional formulation [80]. Even these more complicated functions are easily
converted into the corresponding power-law representations, either in GMA or S-system form,
which are mathematically and computationally more efficient, yet still capture the essence of the
alleged rate laws, at least in some range about a chosen operating point.

2.8 WORKING WITH MODELS DESCRIBED BY GMA AND S-SYSTEMS

2.8.1 FROM BIOCHEMICAL MAPS TO SYSTEMS OF EQUATIONS

An important consequence of the GMA and S-system forms is the direct mapping of the biochemical
network into the system of differential equations that describe the system’s behavior. Biochemical
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maps, or pathway diagrams, are often used to depict the network of reactions found in metabolic
systems. These maps, when drawn using a specified set of rules, are a valuable aid in the visual-
ization and analysis of biochemical systems. The rules for constructing maps form a graphical
language describing the relationships between the species in the system. This language should use
a well-defined vocabulary of symbols with clear and unambiguous meaning and include a procedure
with which the dynamic system equations are extracted from the map.

2.8.1.1 Map-Drawing Rules 

In the maps used throughout this chapter, we use a consistent format that we will now describe.
For our purposes, biochemical maps are graphs consisting of nodes and edges. Nodes indicate
species or pools of material, such as metabolites, cofactors, proteins, enzymes, mRNAs, or other
molecules of interest. Nodes are labeled with the name or description of the represented pool. Solid
edges are used to connect these pools and indicate a flow of material via a reaction or transport
mechanism where the direction of flow is indicated by an arrowhead. If more than one species
participates as a reactant, the edge is multitailed, and if multiple products result, the edge is
multiheaded. In many biologically interesting enzyme-catalyzed reactions, other species within the
system activate or inhibit reactions and thus act as catalysts or control signals within the network.
We indicate these signals as dashed, directed edges extending from the pool causing the modulation
to the edge representing the reaction that is modified. If the effect is to increase the rate of reaction,
a plus sign (+) is placed next to the arrowhead; for inhibition a minus sign (–) is displayed. Examples
of this symbolic representation are provided in Figure 2.8.

FIGURE 2.8 Illustrations of the basic components of biochemical maps and map-drawing rules employed
throughout this chapter.
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2.8.1.2 Maps to GMA Systems 

Systems of differential equations for GMA systems are easily constructed from a biochemical map
drawn according to the rules given above. Each reaction (solid edge) is converted into a power law
giving the rate of advancement of the reaction. The rate law is constructed by forming a product
of power-functions, one for each species that appears as a reactant (solid tail) or as a modifier
(dashed edge) and a rate constant. This yields the rate of the reaction in the “by now familiar”
form . For each time-varying species in the system, we next write the
differential equation describing its evolution by constructing a summation consisting of one term
for each reaction in which the species participates. Participation can be determined from the map
by identifying all of the solid edged tails or heads connected to this species. For each reaction
producing the species, we add a term formed from the product of the advancement rate for that
reaction and the stoichiometry with which the species participates in that reaction. For reactions
consuming the species, we subtract such a term. This yields a system of equations matching the
earlier general expression dX/dt = S · v. Each edge in this diagram has an associated kinetic order
in the model and we can make reasonable assumptions as to the sign of these kinetic orders based
on their appearance in the map. Species appearing as reactants or as activating modifiers are expected
to have positive kinetic orders and those acting as inhibiting modifiers are expected to have negative
kinetic orders. Our ability to infer the sign of the kinetic orders from the map has important
implications for the numerical estimation of parameters and for controlled comparisons of bio-
chemical systems, which we shall discuss later. An example of the process of converting biochemical
maps to a system of differential equations is illustrated in Figure 2.9.

2.8.1.3 Maps to S-Systems 

S-systems are special cases of GMA systems in which only two terms appear in each differential
equation, one describing the aggregated influx rate and one describing the aggregated efflux rate.
Thus, while GMA systems emphasize reactions, S-systems are more species centric, and this

FIGURE 2.9 The differential equations for the GMA and S-system representation of the given biochemical
map were constructed according to the rules in the text. For example, the production of X1 is a function of
both X6 (substrate) and X3 (inhibitor of this reaction). We expect f1,3 to be less than 0 because X3 inhibits this
reaction. Terms for the other five reactions are determined similarly. The GMA and S-systems differ only in
the degradation of X1. In the GMA form, two terms are present, one for the path to X3 and one for the path
to X2. Since both X1 and X5 effect the efflux of X1, the term in the S-system is given by β1X1

h1,1X5
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requires a slightly different set of rules for the construction of the system of differential equations.
For each species, we identify all reactions in which that species appears as a product and make a
list of all other species that participate as reactants or as modifiers in any of those reactions. A
single power-law term is constructed as the product of all species in our list, raised to their individual
powers, and a positive-valued rate constant. A term representing the efflux is constructed similarly
by examining all reactions in which this species participates as a reactant. The difference of the
influx and efflux terms gives the differential equation for this species. Differential equations are
constructed in this manner for all time-varying species in the system. The process is illustrated in
Figure 2.9.

The parameters are so far not numerically specified, but it is important to note that the parameters
appearing in these expressions are often constrained by precursor–product relationships. If, for
example, a reaction consumes one species and produces another, the efflux term of the reactant
and the influx term of the product are constrained. 

2.8.1.4 GMA Systems to S-Systems 

An S-system model and a GMA model of a biochemical system differ only at points in the system
where branches occur. Branches result when two independent processes produce or degrade a
species in the system. In a GMA system, these independent fluxes appear as independent terms in
the model, whereas in S-systems the fluxes are aggregated. It is often convenient first to construct
a GMA system and secondarily to construct an S-system model from this GMA model. In this
transition, the S-system terms approximate sums of power laws found in the GMA model as single
power laws at each of the branches being aggregated. We recall that the slope, in log–log space,
of the rate law that is being approximated determines the kinetic order of the power-law approxi-
mation. To approximate the sum of power laws, given in the GMA by

(2.10)

We determine, one by one, the kinetic orders of each variable in the S-system by recalling the
relationship between slopes and kinetic orders in log–log space. Instead of explicitly transporting
the sum into logarithmic coordinates, we take advantage of the relationship d ln(x)/d ln(y) =
(dx/x)/(dy/y) and write the kinetic order for Xj in the influx term of the S-system equation for Xi

directly as

(2.11)

The kinetic order for Xj in the single power-law approximation of the S-system form is thus
given simply as the weighted sum of the kinetic orders for Xj from each term in the GMA form.
Each weight is determined by the contribution to the total flux provided by that term. This rather
intuitive result is a direct consequence of the power-law representations used in the GMA and
S-system forms. The S-system kinetic orders are functions not only of the GMA system kinetic
orders but also of the fluxes and, therefore, the quantities of each species affecting Xi. 

The GMA and S-system can, in general, have the same influx, efflux, and slope at only one
state. The kinetic orders computed as shown above are therefore to be evaluated at this one point,
the operating point, which often is selected as the steady state of the system. The rate constant of the
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power-law approximation is determined by requiring that the flux of the S-system approximation
and the original GMA system match at this operating point. Having computed the kinetic orders,
the rate constant is therefore determined as 

(2.12)

The straightforward procedure for constructing an S-system from a GMA system has several
advantages. The resulting system is guaranteed to have the same flux and slope at the operating
point. For systems that stay near the operating point, the S-system approximation often provides
a very good approximation to the GMA system [98]. If the operating point is a steady state for the
GMA system, the S-system will also have that steady state. The influx term of the S-system has
the same value as the GMA sum of production terms and the efflux term has the same value as
the GMA sum of consumption terms. If the GMA system is at steady state at the operating point,
the sum of the production and consumption terms is 0. This implies that the same holds for the
S-system.

Even though it may seem redundant, it is often useful to construct both the GMA and S-system
forms, because they allow slightly different analyses and also indicate how sensitive the model
results are to the power-law approximation.

2.8.2 STEADY-STATE SOLUTIONS FOR S-SYSTEMS

A distinct advantage of the S-system form is the computational accessibility of the system’s steady
state. A system reaches steady state when there is no net change in the quantities of its species.
This condition can be reached if either all fluxes are zero or if the net influx and efflux for each
species exactly cancel. The first case would occur only if all reactions stopped and would constitute
death in a biological system and so is not of interest. The second case can occur anytime the
production and consumption of all species are balanced even if those processes are occurring with
large magnitude or very rapidly. In S-systems, the steady-state condition dX/dt = 0 directly leads
to the determination of the system’s steady state [89]. For variable Xi this yields

(2.13)
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The simultaneous solution to all equations in dX/dt = 0 therefore can be written as

(2.14)

which mathematically has the form of the (linear) matrix equation Y = A–1b, when the terms are
conveniently renamed. For most nonlinear systems, an analytical solution for the steady state is
not generally available and simulation or other numerical methods must be employed. S-systems
are distinctive in that this solution is so readily available. 

The form of the solution provides insights into the relationship between model parameters and
the steady state. Kinetic orders appear in the solution as differences between the order of influence
in the influx and efflux terms. If species Xj appears in both the influx and efflux terms for Xi, the
kinetic orders gi,j and hi,j are nonzero. If we increase or decrease both by the same amount, the
difference remains the same. Since the steady-state solution depends only on differences in kinetic
orders, the steady state is unaffected by this change. Rate constants appear in the solution as ratios
of the efflux rate to the influx rate. So, increasing or decreasing both αi and βi by the same
multiplicative factor has no effect on the steady state. The factor cancels out in the ratio and thus
the steady state solution is unchanged. This result makes intuitive sense as we are simply increasing
the amount of material produced and consumed during each time period by the same amount. The
total amount remains the same. In many cases, however, we cannot independently modify the influx
and efflux rates for species that are constrained by precursor–product relationships.

2.8.3 STABILITY

Biological systems must be robust with respect to an ever-changing environment. These systems
have evolved to store nutrients and energy when available and retrieve it from storage when needed —
all in an effort to maintain relatively stable concentrations of key metabolites. This robustness is
evident in the ability of biological systems to respond to short-term changes in the environment
and quickly to return to the desired steady state. The ability to return to the steady state following
small perturbations is an indication that the system has a locally stable steady state. Steady-state
solutions can be stable, as expected in a biological system, but may also be marginally stable or
unstable. A stable steady state can be described as a marble sitting at the bottom of a bowl. Pushing
it up the side of the bowl and releasing it perturbs the marble’s state. After some time, it settles to
the bottom of the bowl at the original, stable steady-state point. In the marginally stable case, small
perturbations cause the system to assume a different steady state. A marble sitting on a flat table
characterizes this case. Pushing it to one side or another perturbs the marble. When released, the
marble stays at its new position, the new steady state. The marble can assume an infinite number
of possible steady states corresponding to the possible positions on the table surface. In the unstable
case, small perturbations cause the system to move away from steady state. This case can be
characterized as a marble sitting on the top of an inverted bowl. As long as the marble is perfectly
balanced on the top of the bowl, it remains in that steady state. A slight perturbation in the marble’s
position will cause it to move away from the steady state. Perturbations in an unstable steady state
may cause the system to move to another steady state or may cause quantities of species to go to
zero or infinity. In all of these cases, we are considering only the local stability of the system. Even
for a locally stable steady state, the system may be moved out of this state with a sufficiently large
perturbation.

The local stability of an S-system can be determined by linearizing the system about its steady
state. The behavior of this linear system and that of the approximated S-system are similar in a small
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neighborhood about the steady state and thus an analysis of the linear system reveals the stability
of the S-system [99]. The stability of a linear system dX(t)/dt = ΛX(t) is determined by the
eigenvalues of the coefficient matrix Λ. For an S-system, the elements of Λ are obtained by
constructing a linear approximation to the expression for the rate of change of Xi about the steady
state:

(2.15)

The eigenvalues of the matrix Λ are then computed using methods from linear algebra, which
are available in most scientific computing packages (MathCAD, Matlab, etc.). Eigenvalues are
typically complex numbers with an imaginary and real part. The real parts of the eigenvalues of Λ
determine the stability of the system. If any of the eigenvalues have a positive real part, the system
will have an unstable steady state and if all of the eigenvalues have negative real parts, the system
will have a locally stable steady state. For eigenvalues with zero real parts and nonzero imaginary
parts, the system is likely to exhibit oscillatory behavior. These effects are illustrated in Figure 2.10,
which shows the loci of eigenvalues for the linearized system along with sample time courses for
the associated S-system as a function of h2,2, one of the system parameters. As h2,2 is varied from
–1 to 3, the eigenvalues of the linearized system move along the plotted locus curve, starting with
positive real parts (unstable), crossing the imaginary axis when h2,2 is near –½ (oscillatory behavior),
and ending with negative real parts (stable) throughout the remainder of the locus. Systems having
eigenvalues with positive real parts show rapid growth or oscillations with increasing amplitude,
which however may be bounded by a stable limit-cycle oscillation. Those with negative real parts
approach the steady state either directly or following damped oscillations. Eigenvalue analysis of
the linearized system is therefore a valuable predictor of the qualitative behavior of the nonlinear
S-system. We are often interested only in evaluating the stability of the system and thus need only
determine if the eigenvalues all have negative real parts. Forming the characteristic polynomial of
the matrix Λ and using the Routh–Hurwitz analysis can eliminate the complicated process of explicitly
computing the eigenvalues [55].

2.8.4 STEADY-STATE SENSITIVITY ANALYSIS

To this point, we have not differentiated between species whose quantities vary with time and those
that, within our model, are fixed or controlled by some external or internal mechanism. We will
refer to the variables representing the quantities of these time-varying species, whose behavior
depends on the differential equations of this system, as dependent variables and those whose values
are unaffected by the action of the model as independent variables. In cases where the values of
these independent variables are fixed, their contribution to the rate law can be absorbed into the
rate constant and the steady-state solution is as given above. In many cases, these independent
variables represent environmental conditions or external signals whose influence we would like to
investigate. To accomplish this, we need to make explicit the contribution of each independent
variable on the steady state of the system. Following the results from above, we can partition the
vector of variables into n dependent variables and m independent variables where, by convention,
the dependent variables appear in the first n indices. We can then write the following solution for
the dependent variables, dXD /dt = 0, as

(2.16)
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FIGURE 2.10 The central graph plots the locus of the eigenvalues for the given map as a function of parameter
h2,2, varied from –1 (inhibition) through 0 (no effect) to 3 (activation). For selected points on the locus, we
also plot the time course for the system starting at (1,1). For eigenvalues near the imaginary axis, we see
strong oscillation in the response with growing amplitudes for cases with positive real parts (unstable cases).
The system demonstrates a stable steady state when the eigenvalues have negative real parts.
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where

(2.17)

It is again instructive to examine the form of the steady-state solution in logarithmic coordinates.
The values of the dependent variables in logarithmic coordinates are determined by an expression
linear in the logarithms of the independent variables and, therefore we find that ∂Yi /∂Yj = –c where
the constant c is given by the entry (i, j) of the matrix for a dependent variable Xi and an
independent variable Xj. From the chain rule of calculus we recognize that 

(2.18)

This quantity can be interpreted as the relative change in the dependent variable (∂Xi /Xi) due
to a relative change in the independent variable (∂Xj /Xj) and is referred to in BST as a logarithmic
gain. The logarithmic gain of dependent variable Xi with respect to independent variable Xj is
therefore defined as

(2.19)

A logarithmic gain of Li,j = L(Xi, Xj) indicates that a 1% change in the quantity Xj will cause
an approximately Li,j% change in the steady-state value of Xi and thus measures the gain of the
system from Xj to Xi. Logarithmic gains are useful measures of how sensitive the system’s steady
state is to changes in the quantity of an independent species.

Biological systems are also robust with respect to changes in rates and affinities associated
with the enzymes catalyzing reactions in these systems. In other words, biological systems tend to
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be insensitive to mutations that effectively change the rate constants and kinetic orders of our
models. It has been proposed that robustness, which is related to sensitivity, be used as a measure
of plausibility for models of biological systems. The steady-state solution to an S-system facilitates
the analysis of sensitivity with respect to these parameter changes. The solution given above
indicates that the steady-state solution in logarithmic coordinates is also linear in the logs of the
rate constants. We see that ∂Yi/∂ log (βj) = k where the constant k is seen to be the entry (i, j) of
the matrix . As with logarithmic gains, the value k can be interpreted as the relative change in the
steady-state value of Xi due to a relative change in the value of βj. This value is called a parameter
sensitivity and, for rate constants, is defined as

(2.20)

Again, a sensitivity of S indicates that a change of 1% in the given rate constant will result in an
approximate S% change in the steady-state value of the given dependent variable. We also see that
the sensitivities for the rate constants for the influx and efflux terms are related, as any change due
to a relative increase in the influx should be equal to the relative change due to a comparable
decrease in the efflux. 

Similar results can be obtained for sensitivities with respect to changes in the kinetic orders.
The sensitivity is defined similar to that given above:

. (2.21)

While not directly evident in the steady-state solution, kinetic order sensitivities are straight-
forwardly computed from the rate constant sensitivities, the given kinetic order, and the steady-
state solution by way of implicit differentiation [100]. As with logarithmic gains, sensitivities
measure the relative change in the steady state due to changes in the parameters of the model.
Biological systems and models of those systems should demonstrate low sensitivity, and thus these
measures are useful diagnostics in model development [101].

In addition to changes in the steady-state quantities, we are also interested in how the steady-
state fluxes change with changing independent variables or parameters. In this case, we wish to
determine the relative change in the flux through a species due to relative changes in independent
variables or parameters. Flux, as used here, refers to the rate at which material flows into the pool
of a given species. Since our analysis proceeds at steady state, this is also the rate at which material
leaves the pool. This differs from the use of the term “flux” to describe the rate of flow along a
given reaction since in S-systems, all of the reactions that produce (or consume) a species are
aggregated into a single influx (or efflux) power-law term. The form and interpretation of logarithmic
gains and sensitivities of fluxes with respect to independent variables and parameters are similar
to that described above.

2.8.5 PRECURSOR–PRODUCT CONSTRAINTS

In most modeling applications, the modeler must be concerned with the conservation of flux or of
moieties that result in constraints on the parameters of a GMA or S-system model. In metabolic
pathways, for example, the efflux from species A is often the influx to species B as they participate
as reactant and product in the same reaction. This implies that the power-law describing the rate
of consumption of A must be the same as the production of B, thus placing constraints on the rate
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constants and kinetic orders in those two terms. These so-called precursor–product relationships
must be considered in the design and analysis of a model. 

The pathway illustrated in Figure 2.11 shows a system with three species X1, X2, and X3 and
three reactions. Writing the S-system directly from this map gives

(2.22)

and it appears at first that the system is defined by eight parameters. From the map, it is clear that
the consumption of X1 to produce X2 must be balanced and therefore the influx to X2 must be
constrained to be equal to the efflux from X1. Under these constraints (α2 = β1, g2,1 = h1,1, and g2,3

= h1,3), the system has only five parameters and the following system of equations:

(2.23)

As a result, when computing sensitivities with respect to parameters, we can no longer just
take the (1,1) entry of the matrix to calculate the sensitivity of X1 with respect to β1. The desired
sensitivity is given by the difference of the (1,1) entry and the (1,2) entry in . If these entries
have opposing effects, the difference may cancel what would otherwise appear to be a high
sensitivity. Precursor–product relationships must be properly accounted for prior to the analysis of
system sensitivities. 

S-systems have a single term aggregating all reactions producing (or consuming) a species. In
a simple merging pathway as shown in Figure 2.12, the efflux terms from species X1 and X2 are
written as and and the influx term to X3 is written as , and the precursor–
product constraint is 

(2.24)

FIGURE 2.11 Simple linear pathway with a regulated step producing X2 from X1. The flow of material from
X1 to X2 creates a precursor–product relationship that introduces constraints into the S-system model.

FIGURE 2.12 A simple branched pathway introduces a precursor–product constraint that is precisely satisfied
only at the operating point in an S-system model.
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In general, this expression can be satisfied at only one point. When the parameters α3, g3,1, and
g3,2 are determined by a power-law approximation to the sum of power laws on the right, the
equation is satisfied at the operating point. Again, care must be used in interpreting the sensitivities
for α3, g3,1, and g3,2 which are functions of β1, β2, h1,1, and h2,2.

2.8.6 MOIETY CONSERVATION CONSTRAINTS

In addition to precursor–product constraints, we must often deal with constraints due to the conser-
vation of moieties in the system. Figure 2.13 illustrates a simple phosphorylation–dephosphorylation
reaction pair controlled by an external signal, a pattern common in signal transduction cascades
such as the MAP kinase cascade. In the illustrated model, the total amount of the enzyme E is
conserved but shifted from the inactive (unphosphorylated) to the active (phosphorylated) form as
a result of an external signal. The S-system model of this system is given by

(2.25)

where the precursor–product relationships are included. We can immediately see that  and,
as a result, the system is found to have an infinite number of steady-state solutions. When we
constrain the sum XT of the active and inactive forms to be fixed, the system reduces to a single
differential equation of the form

(2.26)

A steady-state solution for this equation can be determined using numerical methods. In
S-systems, conserved moieties cause the matrix to have less than full rank and thus a unique
closed-form solution cannot be obtained using the approach given above. The solution under the
constraint appears at the intersection of the line and a power-law curve
giving the space of possible solutions to the underdetermined system represented by the two
differential equations mentioned above. The numerical approach to solving the single differential
equation above is equivalent to finding this intersection. It is also possible to find the steady state
by numerically integrating the pair of equations given above. Since the moiety conservation
relationships are inherent in the differential equations, the steady-state solution is guaranteed to
adhere to these constraints at least to the accuracy of the numerical solution. This approach has
the advantage of eliminating the need to create a reduced set of equations at the expense of a
numerical solution to the differential equations. 

FIGURE 2.13 Conserved moieties create constraints that must be considered in the model development
process. In the map shown above the total X1 + X2 remains constant which leads to loss of a degree of freedom
and thus a constraint on the parameters of the model.
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2.8.7 SYSTEM DYNAMICS

2.8.7.1 Solving the System 

The preceding paragraphs focused on the steady-state solution to the S-system and the properties
of that solution. The stability of the steady-state solution, sensitivity with respect to parameter
variation, and sensitivity with respect to changes in the independent variables were all shown to
be easily determined from the steady state. These properties give us limited, yet important insight
into the dynamics of the system. Dynamical analyses beyond stability and robustness of GMA or
S-system models require numerical methods that integrate the differential equations starting from
a selected set of initial conditions and predict the quantities of each species at a future time using
the current state and the value of the derivative at the current time. In the simplest of these methods,
Euler’s method, the future state is projected from the current state with the formula x(t + h) ≈ x(t) +
h · dx(t)/dt, where h is the size of the time step of the integration. More complicated methods avoid
the accumulation of numerical error in the solution, which would result from this first-order
approximation. Numerical integration of biological systems models is also complicated by the fact
that many biological systems include reactions operating on time scales ranging from milliseconds
to days. Systems of differential equations with very different time scales often lead to what are
called stiff systems [102]. These systems are particularly difficult to integrate using numerical
methods, and special algorithms have been developed to accommodate these difficulties. The choice
of algorithm for the solution of these systems is problem specific and must be addressed for each
model. Modern scientific computing packages such as MathCAD and Matlab include a variety of
easy-to-use methods that trade off compute time, accuracy, and support for stiff systems.

The power-law terms in GMA and S-systems offer particular advantages in developing numer-
ical solutions. It has been shown that writing the solution as a Taylor series in logarithmic coordi-
nates allows the necessary higher-order derivatives to be computed from a straightforward recursion
involving the current state of the system, the kinetic orders, and rate constants [103]. The ability
to compute many higher derivatives efficiently allows us to construct high-order Taylor series about
the current state with great ease. With these Taylor series, future values of the system state can be
quickly computed and the error of prediction estimated. An order and step-size adaptive algorithm
has been implemented using this approach [104,105].

2.8.7.2 Visualization of Time Courses 

Visualizing the dynamic response of a system is an important part of understanding the system’s
behavior. Typically, two types of graphs are used to display modeling results: the time course plot
and the phase-plane plot. Time course plots are simple graphs of the quantity or concentration of
a species, plotted on the y-axis, as a function of the simulation time, plotted on x-axis. The quantities
of several species can be plotted on the same graph or as a series of stacked graphs in the form of
a strip chart. Stacked strip charts are often useful when each of the species have very different
ranges. Time course plots are useful in determining, for example, the steady state of the system,
the time required to settle to that steady state, and the behavior of the system while approaching
the steady state (e.g., a damped oscillation). For systems with periodic behavior, the time course
gives us the period of the oscillation, the minimum and maximum amplitudes, and the relative
phase of oscillation in the modeled species. Time course plots are also useful when overlaying
experimental data with predicted data. Examples of time courses are given in Figure 2.14.

2.8.7.3 Visualization of Dynamics in the Phase Plane

Phase plane plots provide a convenient method for viewing the behavior of one species as a function
of another as a trajectory of points in time. This format is often useful in viewing limit cycles and
other oscillatory behaviors. For each time step, one plots a point on the phase-plane whose x-value
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is given by the current quantity of species A and whose y-value is given by species B. Successive
points in time are connected by lines to create a trajectory in the domain of species A and B. Phase-
plane plots provide a view of the behavior of a pair of species in the system. If, for example, the
system enters a stable limit cycle, the trajectory will repeatedly trace out a closed curve in the
phase-plane showing the trajectory of the limit cycle. If the system exhibits damped oscillations
settling to a stable steady-state point, the phase-plane trajectory will spiral toward the stable point.
Several starting points can be plotted on the same graph to illustrate the path taken by the system
as it evolves under different starting conditions, often approaching the same limit cycle or stable
point. Phase-plane plots, however, lose the sense of time found in a time course plot since there is
no indication of time along the trajectory per se. This can be amended by plotting symbols or
points for each pair. If the time samples in the plotted data are equally spaced, the spacing of the
points gives an indication of the rate of change of the two species along the trajectory. Points that
are spaced closer together indicate a slow rate of change while those far apart indicate a rapid rate

FIGURE 2.14 Example of time course and phase plane plots for a simple negative feedback oscillator. The
original model, taken from (Tyson 2003), was converted into a GMA system using the procedure described
above. The system was then integrated for 100 time units and variables X1, X2, and X3 were sampled during
the integration. Time course (left) and phase plane plots (right) were then constructed. The phase plane plot
shows data points sampled uniformly in time and the spacing between successive points is therefore an
indication of the rate of change of the system.
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of change. Another disadvantage of phase-plane plots is that we can only view the relationship
between two species at a time. Three-dimensional phase-plane plots can be constructed but must
usually be rotated into a 2D projection or include pair-wise projections to give a feel for the data.
Examples of phase-plane plots are given in Figure 2.14. Both time course and phase-plane plots
are useful in the visualization of dynamic response data and can be easily constructed from the
numerically integrated time course.

2.8.8 PARAMETER ESTIMATION

2.8.8.1 From Rate Laws to Power Laws 

BST has been effectively applied to a variety of biological and biochemical systems including
anaerobic fermentation [106], citric acid production in A. niger [107], the tricarboxylic acid cycle
in D. discoideum [86], the glyoxylase system [108], trehalose cycle [56] and sphingolipid metab-
olism in yeast [109], and purine metabolism in man [110–112]. In most BST-based modeling
applications to date, the development process began with an initial map of the biochemical network
and a set of rate laws and associated parameters based on Michaelis–Menten-type mechanisms. An
important step in the development of these models, therefore, was the construction of the corre-
sponding power-law rate laws. We review this step, beginning with the identification of the operating
point at which the approximation is to be made. The previous discussion has indicated that, at the
operating point, the advancement rate of the reaction and the slope of change in that rate due to
any species effecting the reaction match that of the original rate law. Typically, we are interested
in the system behavior about an observed steady state and so we often select a steady-state point
as operating point. Thus, the Michaelis–Menten system and both the GMA and S-system repre-
sentations are equivalent at this point. Once the operating point is selected, the computation of the
power-law approximations is a matter of straightforward partial differentiation.

Because of its prevalence, the Michaelis–Menten function is a good subject for illustration.
Thus, we begin with VMM (S) = Vmax · S/(Km + S), where Vmax and Km determine the maximum rate
and the substrate concentration yielding half of that rate, respectively. There is only one species
for which we need to calculate a kinetic order, and we therefore know already the symbolic form
of the power-law approximation, namely VPL (S) = γ · S f. The kinetic order f is the slope of VMM (S)
with respect to S in logarithmic coordinates evaluated at the operating point Sop:

. (2.27)

Computing kinetic orders in this way guarantees that the rate of change of the rate with respect
to each species affecting the rate matches that of the original rate law. Once all kinetic orders have
been computed, one determines the rate constant such that the rate of the Michaelis–Menten function
matches that of the power-law representation at the operating point. Equating the two yields
immediately

(2.28)

This process is repeated for each reaction in the system. The GMA model of the system is then
written directly from these rates and the stoichiometry using the procedures described previously.
If the rate laws used to describe biochemical reactions are more complicated, one easily employs
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modern computer algebra systems such as Maple® or Mathematica® to automate the process of
differentiating the entire network of rate laws and evaluating them at the operating point.

2.8.8.2 Parameter Estimation from Time Course Data 

Advances in experimental methods are offering the possibility of collecting simultaneous time
series data for many of the metabolites in a system. Coupled with nonlinear regression methods or
genetic algorithms, one can estimate the parameters of the model directly from these experimental
data. At present, much of this work is ongoing and a superior approach has not yet emerged. One
of the proposed methods preprocesses the time series data to estimate the derivative of the time
course of each measured metabolite using either the slope of the time course or the first derivative
of a smooth curve that is computed to run through the time course [113]. Without this step, regression
of the parameters on the time series itself requires costly integration of the predicted time courses
for each combination of parameter values attempted by the nonlinear regression algorithm [140].
Using slopes as estimates of derivates, the problem of finding the parameters is reduced to a
nonlinear algebraic regression problem. Methods using, for example, different means of smoothing
and alternative gradient searches and genetic algorithms to accomplish the regression are presently
being investigated. 

Most directly, the parameters of the power-law model could, in principle, be computed from
experimental data measuring the kinetics of a reaction as a function of substrate or modifier
concentration. When plotted in logarithmic coordinates, the slope of the line through the data points
estimates the kinetic order of the system and the measured rate at a selected operating point.

2.9 APPLICATIONS OF BIOCHEMICAL SYSTEMS THEORY

2.9.1 MODELING AND SYSTEMS ANALYSIS

Systems biology is often associated with the development of models of biological systems, and
BST has been used extensively in this regard. Using the methods described previously provides a
path from maps of biochemical systems and associated rate laws or time series data to the structure
and parameters of a representative model based on the power law formalism. By itself, the model
development process often yields insights into the systems as it forces the developer to investigate
and question the interactions that have a significant influence on system behavior. For models based
on the power-law formalism, this often becomes equivalent to questioning whether a particular
kinetic order should be 0 or not. The canonical representations used for GMA and S-system models
and the direct association of model parameters and elements of the biochemical map make it
possible to translate these questions about system structure into questions about the parameter
values in the model. The modeling process also often reveals if variables or processes are missing,
because the analysis may show that no parameter combinations could describe some of the observed
data. The diagnostic tools of BST are very valuable in this regard.

Completed models offer possibilities for both explaining observed system behavior and pre-
dicting new behavior. Consider the model of purine metabolism constructed by Curto and coworkers
[110–112]. This model represents a complex network of reactions involving 18 metabolites,
23 enzymes, 37 reactions, and numerous regulatory influences leading from ribose-5-phosphate to
uric acid. With this model, the authors were able to examine disease states due to inherited mutations
in critical enzymes such as phosphoribosylpyrophosphate synthetase (PRPPS) and hypoxanthine-
guanine phosphoribosyltransferase (HGPRT) by appropriately scaling rate constants in steps cata-
lyzed by these enzymes. The new steady state of the system was then determined using the methods
described above and compared to clinical observations. 

Once validated, these types of models can be used to predict metabolic responses to enzyme
deficiencies or persistently increased enzyme activities and thus provide systemic means for exploring
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a disease condition. In a similar fashion, the models can be used to identify sites that may provide
particularly effective therapeutic control points and to evaluate the effects of drugs targeted to affect
specific enzymes. Because the models ideally represent the entire relevant pathway, they allow the
analysis of desired treatment effects and of potential side effects. In the purine example, the system
was primarily assessed close to a healthy or diseased steady state, but since the model also represents
the dynamic behavior of the system, it is possible to study transient effects as well. One could, for
example, easily simulate the system in response to time-varying conditions, such as the periodic
administering of a drug, and study the transient responses of the system to a given dosing regimen.

Numerous examples of model development using BST are available in the literature and the
reader is referred to them for additional insights. There is no one solution fitting all modeling needs,
and models do not typically emerge in a single pass through the model development process. It is
therefore instructional to consult the literature for case studies that show the iterative modeling and
refinement process [114].

2.9.2 CONTROLLED COMPARISONS OF BIOCHEMICAL SYSTEMS

A central theme in the application of BST has been the comparative analysis of biochemical systems.
As the analysis of biochemical networks has grown, common patterns of design have emerged.
Feedback inhibition, for example, is often used as a regulatory mechanism in nature, where the
final product of a biosynthetic process inhibits an early step in that process. Since biological systems
tend to reuse successful design patterns, one should expect some benefit to the organism from
selecting this mechanism of control over some other mechanism. Early in the development of BST,
Savageau recognized that a quantitative method was needed to conduct objective comparisons of
observed and hypothesized design alternatives, and that these comparisons were instrumental for
answering questions of why nature seems to favor particular designs over other apparently reason-
able alternatives. As a result, the Method of Mathematically Controlled Comparisons was developed
[115]. This method is often described as the computational equivalent of a well-controlled laboratory
experiment. The systems being compared are made to be as similar as possible so that the results
are not confounded by extraneous differences. In a laboratory experiment, this might correspond
to using genetically pure strains of a bacterium, which are maintained at conditions that differ only
in the variable of interest. Analogously, the computationally equivalent reference and alternative
designs are formulated as BST models and compared using measures of functional effectiveness
that are thought to represent evolutionary advantages. Because the two models are constructed to
differ only in the one feature of interest, better performance of one design over another can be
attributed to this difference. Controlled comparisons have been used to study design alternatives
in genetic circuitry, regulation in the immune system, regulation in biosynthetic pathways, and
irreversible step positions in biosynthetic pathways. Because of their conceptual importance, it is
useful to sketch out the strategy of a controlled comparison in more detail.

The goal is to compare objectively the benefits of one regulatory structure over another with
respect to some quantitative measure such as robustness, gain, response time, or flux. The method
begins with the development of mathematical models for the reference and alternative structures
using the S-system modeling framework. The S-system model is beneficial in this comparison
because parameters of the model map directly to regulatory influences in the system. The alternative
design is allowed to differ from the reference at one reaction, the subject of the analysis. All other
reactions remain the same. In the example shown in Figure 2.15, the two systems differ only in
the presence of feedback inhibition from the product back to the first step in the reaction. The
parameters for reactions other than at the step of interest are constrained to be equal, thereby forcing
the two systems to be internally equivalent. In a laboratory experiment, this would correspond to
a gene mutation causing a change in the system at only one step without affecting performance of
other parts of the system. The parameters of the modified reaction in the alternative are not yet
defined and therefore represent degrees of freedom that must be controlled for in the experiment.
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To this end, one places constraints on the parameters of the alternative system, which make the
system as similar to the reference system as possible, except for the difference of interest. Typical
constraints assure that external properties, such as steady-state concentrations of certain metabolites,
selected logarithmic gains, or selected sensitivities, are the same in both systems. Since the systems
are defined as S-systems, closed-form solutions often exist for these systemic properties, and
expressions for the property taken from the reference and alternative are set equal and solved for
one of the unconstrained parameters in the alternative system. Additional constraints are applied
until all of the previously unconstrained parameters in the alternative are fixed. An alternative
constructed in this manner is considered to be externally equivalent to the reference because, to an
external observer, the reference and the alternative exhibit the same behavior with respect to the
constrained properties. The reference and its internally and externally equivalent alternative can
now be compared with respect to the predefined set of functional performance measures. These
functional performance measures can again often be expressed in closed form, which permits a
comparison of the reference and alternative in terms of the ratio of these measures. Since the sign
of the model parameters is known, the comparison often leads to a very general conclusion of
preference that is independent of the numerical parameter values in the system. In cases where the
preference cannot be determined independent of the parameter values, statistical approaches can
be applied [53]. In this case, sample parameter sets are drawn at random from distributions
representing prior beliefs about the range of the parameter values. Equivalent alternatives are
constructed for each drawn reference and the functional effectiveness measures are computed for
each pair. The ratios of these measures are then used in graphical and statistical methods to assess
preference for one design over the other. Studying preferences for one design over another leads
to an understanding of the general benefits of the design and helps us find and understand appli-
cations of that design elsewhere in biological systems.

As an illustration, both biosynthetic pathways shown in Figure 2.15 implement the synthesis
of X3 from X4 through intermediates X1 and X2, with the demand determined by X5. In the reference
design, the initial step is inhibited by X3, a regulatory signal not found in the alternative. The
S-system for the reference can be directly determined from the biochemical map in the figure and
is given by

(2.29)

From the map, we know immediately that the parameter g1,3 must be negative as it inhibits the
production of X1. All other parameters are positive. The one difference between the reference and
alternative is the presence of feedback inhibition from X3 to the production of X1. This inhibition

FIGURE 2.15 Two possible designs for a linear biosynthetic pathway. The reference design includes feedback
inhibition of the first step by the end product of the pathway.
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is represented by the kinetic order g1,3 in the system of equations given above, and the system of
equations for the alternative can be obtained by simply setting g1,3 = 0. We see that the S-system
representation allows us to associate a structural change in the system design (loss of inhibition)
with a specific parameter in the model. For the purposes of this comparison, we write the equivalent
alternative, without inhibition, as

(2.30)

We have indicated that the parameters and differ in the reference and alternative whereas
all other parameters are fixed by internal equivalence. To make these systems as similar as possible,
we must determine values for and that preserve selected external properties. For this example,
we choose to force the alternative and reference to have the same steady-state value of X3 and the
same logarithmic gain in X3 with respect to X4. Closed-form solutions for the steady state of X3

and for L(X3, X4) are determined for the reference and equivalent alternative, set equal, and solved
for and , giving

(2.31)

Now that we have defined a reference and its equivalent alternative, we can compare selected
functional performance measures. We consider how the steady-state value and flux of X3 are affected
by changes in demand given by X5. The properties of interest are L(X3, X5) and L(V3, X5), which
are easily determined in closed form for the steady-state systems. Taking the ratio of L(X3, X5) in
the reference to that in the alternative, we find

(2.32) 

Since g1,3 is negative and h3,3 is positive, this ratio is always less than one, which implies that
the steady state of X3 in the design with feedback inhibition is always less sensitive to demand than
in the alternative design. Low levels of intermediates and low sensitivity to changing demand and
supply are expected to be desirable properties in biosynthetic processes and so we would conclude
that the system with feedback is preferred to the alternative. The logarithmic gains of the flux
through X3 with respect to demand for the reference and alternative are given by 

(2.33)
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We see that in the alternative design the flux through X3 is unaffected by X5, unlike in the
reference system where X5 controls this flux. The ability of the demand signal to control the rate
of production of end product (efflux of X3) is expected to be a desirable characteristic of a
biosynthetic pathway. Again, the reference design with feedback inhibition demonstrates this
behavior, whereas the alternative does not. For both of these effectiveness measures, we were able
to compare the designs while only knowing the signs of the parameters. If, however, we had been
interested in the settling time of the system in response to a step increase in demand, the statistical
methods of Alves [53] and Savageau [55] would have been required.

Controlled comparisons provide insights into deep principles that cause the selection of one
design over another. The key to performing these comparisons is the direct mapping of regulatory
influences in biochemical systems to parameters in S-system models of those systems. The acces-
sibility of a closed-form solution for the steady state and for properties local to the steady state
enables the direct comparison of designs and, in many cases, the identification of preference for
one design over another, independent of the system parameters. The comparative analysis of
biochemical systems will be an important tool in attempts to understand why biological systems
evolved as they did.

2.9.3 SYSTEM OPTIMIZATION

Early efforts to optimize production in biotechnological systems often failed as a result of a limited
understanding of the distribution of control in biological systems. Increases in the enzyme thought
to catalyze the “limiting step” in these systems failed to produce the desired result. The introduction
of BST and metabolic control analysis (MCA) provided the quantitative framework needed to
understand the relationships in complex systems more fully. 

In many biotechnological applications, the primary objective is to modify a biological process
by over- or underexpressing one or more enzymes with the goal of maximizing the production of
a useful metabolite. The question of how to modify the process is often difficult to answer because
the regulatory influences in the biological system tend to compensate for changes that one might
want to introduce. To understand how to optimize production of the desired metabolite, we need
a faithful model of the system that can be used to predict the results of such changes and that has
a mathematical form suitable for solving the optimization problem.

The availability of an algebraic solution to the steady state makes the S-system modeling
framework a good choice for solving such optimization problems [116,117]. Additionally, the fluxes
in the system, given in power-law form, can also be written as linear expression in logarithmic
coordinates. Hence, since the steady-state solution, metabolite and enzyme concentrations, and
fluxes are all linear in logarithmic coordinates, the optimization of fluxes or metabolite concentra-
tions is easily performed using standard linear programming techniques. Reported applications of
these techniques include the optimization of citric acid fermentation by A. niger [107], ethanol,
glycerol, and carbohydrate production in Saccharomyces cerevisiae [116,117], the catalytic effi-
ciency of triosephosphate isomerase [118], and tryptophan [119] and L-(-)-carnitine production
[120] in Escherichia coli.

2.10 METABOLIC CONTROL ANALYSIS

Parallel to BST, Kacser and Burns [121] and Heinrich and Rapoport [84] independently developed
an approach on the basis of sensitivity analysis, which later coalesced into what is now called
MCA. While the methods of BST and MCA came from different lines of thinking, they arrive at
mathematical solutions that are quite similar. We include this short discussion because MCA has
been widely applied, is occasionally compared to BST, and is in fact closely related to BST.

Early efforts to characterize regulatory enzymes in metabolic pathways focused on the identi-
fication of a so-called rate-limiting step. If such a step existed, it was argued, the overexpression
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of the enzyme catalyzing the limiting step should increase flux through the pathway. This, however,
was not found to be the case in many instances, and researchers realized that control had to be
distributed throughout the enzymes of the pathway. Kacser and Burns and Heinrich and Rapoport
gave an explanation for this shared control by exploiting methods of sensitivity analysis and
developing a quantitative approach for attributing control to steps throughout the pathway. They
focused on assessing how small perturbations in individual independent variables of the system
(e.g., enzyme activities) modified the steady-state behavior of the system as a whole. The small
perturbations and changes to the steady state were measured relative to the unperturbed conditions
and expressed as a ratio. This ratio was termed a “control coefficient” and is defined as

(2.34)

where is the flux at steady state through the reaction catalyzed by enzyme and is the
concentration or activity of the ith enzyme at steady state. Mathematically, this expression is precisely
the logarithmic gain in BST of flux k with respect to the independent variable associated with the
activity of enzyme i (L(Vk,Xi)). Thus, these control coefficients give an indication of one enzyme’s
effect on each flux in the system and are therefore more specifically called flux control coefficients.
One can also measure the effect of an enzyme on the steady-state concentration of any one of the
dependent variables in the system through the use of concentration control coefficients, which is
analogously defined as

. (2.35)

Again, the mathematical form is precisely that of a logarithmic gain in BST. Kacser and Burns
noted that the sum of the control coefficients, over all enzymes having an effect on the system
equals 1:

(2.36)

This result, known as the summation theorem, has important consequences in MCA. It shows
that control is distributed throughout the system and that control coefficients are systemic measures
giving each enzyme’s contribution to this sum. If a new steady state is chosen or if some modification
to the system changes one enzyme’s activity, some or all of the control coefficients must change
so as to preserve the sum. These results reinforce the concept of distributed control promoted by
the developers of MCA.

Control coefficients are systemic properties as they relate changes in an independent quantity
(e.g., enzyme concentration) to changes in the steady-state fluxes or concentrations of the entire
system. MCA also provides methods for connecting the behavior of individual components of the
system to the behavior of the whole. These local properties, called elasticities, measure the relative
change in the rate of an individual reaction, isolated from the system, as a function of a relative change
in a species in the model,

(2.37)
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Elasticities are mathematically equivalent to the definition of kinetic orders in BST. MCA
emphasizes that elasticities, like control coefficients, vary with changes in the system steady state.
Elasticities, as local properties, could be measured in experiments isolating an enzyme from the
system and measuring the reaction rate under changing concentrations of a substrate. The linkage
between these local properties and the systemic properties represented by the control coefficients
is given by the connectivity theorem. This theorem states that the sum over all enzymes of the
product of the flux control coefficient for that enzyme and the elasticity for that enzyme for a given
species is 0:

(2.38)

This theorem provides the basis for expressing the control coefficients in terms of data measured
for each enzyme in isolation.

We have touched on just a few of the important properties and theorems of MCA and recom-
mend that readers interested in a more complete treatment refer to the well-written full-length texts
dealing with the subject [122]. 

2.10.1 RELATIONSHIP BETWEEN BST AND MCA

MCA emerged from the insufficiency of rate-limiting steps as an explanation for the effects of
enzymes on the state of intact systems observed in experimental systems. There was a clear need
to understand and quantitatively characterize the distribution of control in biochemical systems
imposed by the enzymes of those systems. Control coefficients and elasticities were defined as
properties that can be measured in laboratory experiments and, through the theorems of MCA,
form an intuitive bridge between theory and application. Thus, this form of biochemical analysis
facilitates the experimentalist’s understanding of the distribution of control throughout the system
by connecting global properties of a system to the local properties of its constituents. BST, by
contrast, arose from the need to develop quantitative methods for the exploration of the behaviors
of biological systems and their underlying design principles. So, BST has a more extensive
foundation in system theory and targets model building, static and dynamic analysis, comparative
analysis of alternative designs, and optimization of biotechnological processes. Thus, even though
BST and MCA have common mathematical underpinnings, they have evolved along different lines
and have often been applied to different types of scientific questions. 

2.11 FUTURE

Some trends in the development of BST and the mathematical side of systems biology are quite
evident; others, of course, are speculative. Clearly, models will continue to grow in size and increase
in complexity. This trend has been and will be tied closely to the availability of more and better
data, which allow the estimation of specific model parameters, as well as to increased computer
power, wider access to faster computers and the development of higher-level programming lan-
guages. In addition to this growth, it will be necessary to develop new modeling techniques or
adapt existing techniques to the peculiarities of biological systems. Ultimately, the community of
systems biologists must develop theoretical foundations, first for tightly defined phenomena and
then for growing domains of biology.

2.11.1 MODEL EXTENSIONS AND NEEDS

Ten years ago, typical models in biology may have consisted of five to ten variables, whereas it is
not uncommon now to see models containing dozens of differential equations. Without doubt, this
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trend will continue, and it is the declared goal of many investigators around the world to construct
whole-cell models, first presumably of E. coli [123,124], even though other cells, such as hepato-
cytes or pancreas cells, as well as other microbial organisms are already being considered as
representative targets [125–128]. Although several consortia have been formed around this goal
[129] and substantial progress has been made, all involved in these efforts agree that it will take
many years before a reliable model will be completed. 

The first step toward any whole-cell model is almost certainly a complete stoichiometric flux
model that contains all metabolites and fluxes. Draft models of E. coli, S. cerevisiae, and some
other well-studied organisms already exist with at least preliminary quantification [130–132].
However, modeling the metabolic flux distribution is only the first, and arguably simplest, step and
must be followed up with regulated metabolic models, which will include control mechanisms at
different levels, including direct feedback and feedforward signals, signal transduction pathways,
and pathway regulation at the genomic level. To understand metabolism at this level, we must also
know the dynamics of proteins and, in particular, the concentration and activation state of enzymes
and transcription factors. Clearly, these dynamic processes may occur at different time scales and
are often subtler than enzyme-catalyzed conversions of metabolites. Furthermore, because of their
great importance, the control structures within cells are frequently redundant, which complicates
data collection and mathematical analysis.

A significant component of this type of exploration and analysis will entail extracting infor-
mation from data obtained in situ. Especially valuable will be time series measurements, which
implicitly reflect not only the mass flow structure of a system but also its regulatory control. As
mentioned before, many groups have recently begun to develop methods for identifying systems
from time series data; representative trends are reviewed in Veflingstad et al. [133]. These methods
differ greatly in approach and complexity, spanning a range from systematic inspection [134] to
various means of linearization [133,135–138] and attempts of identifying complete nonlinear
systems at once [113,139,140].

At a higher, yet initially coarser scale, it will be necessary to understand the dynamics and
regulation of multicellular organisms, which requires data and models for cell communication
between like and different cell types. Again, this is not uncharted territory, and beautiful examples,
such as bacterium-phage interactions [141] and the regulation of development in sea urchin embryo
[142] indicate that analyses at this level will be very exciting and require specific mathematical
methods that characterize systems biology.

With the increasing size of models, the question becomes more pressing of whether it is valid
and feasible to dissect systems into subsystems or modules and to analyze the entire system by
considering the modules as units, which could be studied more or less in isolation. In some sense,
this approach runs counter to the idea of systems biology and the integrity of cells and organisms.
At the same time, we are learning more about the modularity of actual biological phenomena, and
it does not appear to be far fetched to map this modularity onto mathematical descriptions, which
still preserve some of the connections between modules and among hierarchical layers of organi-
zation and control. Some of these ideas go back at least to Rosen [143] and are now experiencing
a revival [58,144,145]. As a specific example, it is possible to decompose complex metabolic
networks into simpler units performing a coherent function by means of elementary-mode analysis
[146]. This type of analysis permits reconstruction of network topology, analyses of robustness,
redundancy, efficiency and flexibility, and the prediction of functional aspects of genetic regulation.

A different way of thinking about hierarchy and modularity is to associate modules with what
we learn from the exploration of design and operating principles. The argument would be that an
organism has to execute particular tasks, such as the conversion of substrate into easily interchange-
able energy or an effective protection against some environmental stress. Having studied and truly
understood different designs in other organisms, for instance, as a result of controlled comparisons,
along with optimal strategies for accomplishing given tasks under specific conditions, it might be
possible to predict quite reliably the best-suited designs and operating strategies and import them
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into models of the organism of interest, without studying the details of this module further, either
experimentally or through modeling. As an architect designs the blueprint for a house without
initially worrying about every detail of amounts and types of materials to be used in the actual
construction, we will be able to develop biological models at different organizational levels without
being impeded by minute details at other levels. At an abstract level of network analysis, simple
structural design motifs have been found in transcription factor networks, neurons, food webs, and
technological systems [147].

If the modular structure of a biological phenomenon extends throughout different layers, it will
be an important task of systems biology to map the hierarchical control onto effective mathematical
and computational representations that permit analysis and insight [148,149]. The telescopic prop-
erty of S-systems [150,151], which allows the structure-invariant inclusion of modules from lower
levels into higher-level models via power-law approximation, may render BST a particularly
powerful framework for hierarchical systems. 

The vast majority of dynamic biological models rely on ordinary differential equations, which
describe rates of production, conversions, and consumption. This representation implicitly assumes
some degree of continuity, homogeneity, and averaging within the investigated systems. For some
systems and processes, these assumptions may be satisfied, but it is becoming increasingly clear
that they are often violated to a point where one has to question the applicability of continuous,
deterministic models. Three classes of problems arise. One has to do with the fact that the cell is
not a bag holding some homogeneous soup of life, but is highly structured and quite densely packed.
The second issue is that some interactions may involve only a small number of a particular system
component and therefore become highly stochastic and require corresponding methods. Examples
are biochemical reactions, where enzyme or substrate molecules are present in a cell in only very
few copies, and interactions between cells and viruses [141]. The third issue is the spatial organi-
zation of many biology processes, which ultimately will require partial rather than ordinary differ-
ential equations. 

2.11.2 COMPUTATIONAL SUPPORT

With the widened focus of systems biology and the growth of models, both in size and complexity,
comes the need to exchange models among researchers with greater efficiency than is presently
possible. While there is an abundance of specific software packages for particular purposes, only
a small percentage of these packages allow the user to add new features or to include modules
from different programs. As a consequence, many model analyses are never independently validated
outside the author’s laboratory and many phenomena are modeled time and again, because it seems
easier to compose new code than to understand the models of others in sufficient detail to incorporate
them in one’s work. To counteract these problems, higher-level modeling languages like Mathe-
matica and MatLab have been developed, and there is a strong push to standardize both data storage
and models across platforms. Data and model representation seems to be converging to structures
in so-called mark-up languages. Originally created for website design, these languages have become
more general, and specifically the “eXtensible Markup Language” XML [152,153] may become a
universal basis for structuring documents and for high-level modeling systems such as CellML
[154] and the systems biology mark-up language SBML [155]. A particular benefit of computational
standards is that they facilitate the exchange of topological flow diagrams, such as biochemical
maps, as well as the computational and mathematical descriptions of the corresponding models
and, therefore, make both the model structures and mathematical representations more easily
accessible to independent testing within the community of systems biologists.

As biological systems models grow in size and complexity and require large-scale simulation,
it is becoming gradually more difficult to interpret and understand their output and reliability. This
renders it necessary to complement simulation efforts with a different type of systems analysis that
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attempts to discover general — or even universal — design and operating principles. As discussed
before, such principles govern the functioning of entire classes of phenomena, and their discovery
truly explains why a particular organizational or regulatory structure or procedure is superior to
alternative designs. Since BST has been the dominant modeling framework for such analyses, a
specific software, BSTLab [156], was developed to facilitate semiautomated controlled comparisons
for investigations of design and operation. BSTLab is SBML compatible, which makes it automat-
ically accessible to a growing community of systems biologists.

At present, computational tools supporting systems biology target the extreme ends of sophis-
tication within the user spectrum, which, however, is not only growing in size, but also in diversity
of backgrounds. As it stands, nonexperts have no choice but to use the fixed-function tools developed
by experts and must rely on those experts to make enhancements to the tools. Experts cannot go
beyond existing packages either, because these are typically closed source. They therefore typically
resort to general-purpose computation environments and create from scratch the particular code
they need, thereby presumably redoing what others composed before. Evolving scientific software
for systems biology needs to bridge the gap between experts and nonexperts and thus support a
“continuum” of users. Current desktop business applications have accomplished this by providing
menu and forms-based interfaces to preprogrammed functions for nonexperts, macros for users
needing to automate repetitive tasks, scripting (e.g., Visual Basic for applications [157]) for experts
needing to implement customized behavior, and automation (e.g., the component object model
[158]) for programmers who need to take control of the software. These features vastly broaden
the spectrum of users supported by a given tool and must be made available to systems biologists
of different educational backgrounds. 

2.11.3 APPLICATIONS

The premier goal of systems biology will of course continue to be a true understanding of how
biology works. This goal may sound purely academic, but it is evident that it will be the basis for
uncounted applications, most of which are unforeseeable at this time. These applications will
revolutionize medicine, biotechnology, agriculture, use of the environment, and about every aspect
of dealing with our living surroundings. Leroy Hood and Hiroaki Kitano, two of the strong
proponents of systems biology, agree in their prognoses that, based on knowledge of biological
systems, predictive, preventive, and personalized medicine and the design of multiple drug therapies
and therapeutic gene circuits will dominate medicine of the 21st century [58,159]. Already phar-
maceutical companies are investing large amounts of money into high-throughput data generation
[160,161], and it is clear that this experimental side of systems biology will soon be accompanied
by better computational and systems-based analyses [60].

Combined with the miniaturization of biotechnology and the development of “labs on chips”
[162], it may be possible in the future to obtain personalized in vivo proteomic and metabolic
profiles with minimal invasion and even to perform microperturbations that show the individual’s
responsiveness to disease agents and treatments. As we now hook up a car to diagnostic computers
that show, within seconds, what is wrong with its complex electronics, we may soon be able to
obtain a comprehensive picture of the genomic, proteomic, and metabolic state of a patient’s target
tissue. Whole-cell bacterial and virus interaction models will allow us to predict what types of
interventions will be most efficacious in interrupting infectious disease processes without burdening
the human body with side effects. We may even truly understand how microorganisms become
resistant and how our drugs can stay ahead of them. Controlled cell lines will allow us to grow
tissues as per specification.

Biotechnology will be as prominent as computer science and engineering are now. Following
the present and ongoing phases of studying and reverse engineering biological systems [144], we
will be able to start optimizing not just individual pathways [82] or stoichiometric flow patterns
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[130], but whole organisms with all their means of regulation and control mechanisms, their sensing
and signal transduction, and their adaptability and mutability. We will begin constructing living
systems from modules, “nature-prefabricated” parts, or even from scratch [163–165], and thereby
enter a phase of synthetic biology [57], with all its obvious and hidden promises and threats.

2.12 CONCLUSION

For over 5000 yr, mankind has been enjoying bread and beer. The Egyptians had enough of an
understanding to be successful with the required fermentation processes, even though they did not
know the main ingredient, yeast. Today, we have quite intricate knowledge of this organism, with
Medline producing about 80,000 hits for keyword “yeast.” Yet, do we know exactly whether a yeast
cell would survive a so far untested knockout mutation or why bleach kills the organism? What is
it that truly distinguishes a living cell from a dead one? In comparison to the Egyptians of antiquity,
we understand the biochemistry and physiology of fermentation extremely well, but we are not yet
at a point where we could take a yeast cell apart and successfully put it back together, or where
we would be able to design from scratch a new fermentation organism. Systems biology strives to
achieve such capability with large-scale experimentation and global mathematical and computa-
tional analyses.

Systems biology is a young science and its goals are lofty. We cannot expect to complete
comprehensive whole-cell or whole-organism models any time soon, and a theory of biology is
not even on the horizon. One must therefore ask whether there are achievable shorter-term targets
or milestones against which we could measure progress in systems biology. Several decades ago,
Mesaroviać  [23] formulated such a milestone, when he wrote: “The real advance in the application
of systems theory to biology will come about only when the biologists start asking questions which
are based on the system-theoretic concepts rather than using these concepts to represent in still
another way the phenomena which are already explained in terms of biophysical or biochemical
principles.” There are early indications that we are beginning to head in this direction. Biologists
are starting to discuss research problems with modelers and systems scientists and some are showing
guarded willingness to perform experiments that may not be of great intrinsic interest in a reduc-
tionist sense but have value for the construction and numerical implementation of mathematical
models. After overcoming their initial, deep-rooted skepticism about the relative simplicity of
mathematical models in comparison to biological complexity, some biologists are finding out that
systems biology is a mind-set that can help formulate hypotheses and decide which critical variables
may support or invalidate a mental model. They also begin to appreciate that it is frequently the
process of modeling rather than the finished model that is the most valuable outcome [10] and that
wrong models often tell more than models that fit some data well. While some biologists are
developing a taste for modeling, growing numbers of mathematicians and computer scientists are
beginning to study biology in its fascinating detail and thereby subject themselves to the “bilingual”
education [45] that is a necessary prerequisite of systems biology.
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This chapter aims to provide a comprehensive introduction to macroscopic thermodynamics (ther-
mostatics) presented so as to highlight its role as a paradigm for systems thinking. It is not our
intention to replace the great many excellent textbooks of thermodynamics. Instead, we present
thermostatics as a conglomerate of worldviews, methods, and interpretations, which are method-
ologically and conceptually different from chemistry, physics, or engineering. To benefit from the
uniqueness of this methodology, we focus on the modeling aspects of the subject with particular
attention to the 

 

construction

 

 of the two state functions that carry information about a thermostatic
system: the internal energy and the entropy. This is easiest to do by following the subject’s historical
development. 

Most scientists are aware that there are three laws of thermodynamics. The first law is the
conservation of energy and is relatively straightforward. The second law states that energy can only
be degraded. It specifies the “arrow of time.” This law is subtler and merits much more discussion.
The third law concerns the behavior of thermodynamic systems near the absolute zero of temper-
ature and will not concern us in the present treatment. Less well known is the zeroth law, which
is part definition, part postulate, and asserts the well definedness of thermal equilibrium and of the
ordinal scale of temperature that determines which of two systems is hotter. 

 

3.1 BASIC CONCEPTS

 

Underlying all of thermostatics is the definition of the sort of system to which thermostatic
arguments truly apply. Understanding this definition in detail is important for applying the subject
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to systems biology where the notion of a “thermostatic system*” will be stretched to (and perhaps
beyond) its traditional limits. What can constitute a thermostatic system has proved to be a
remarkably robust notion; it will surely be able to accommodate further generalizations appropriate
for systems biology. The key to recognizing what can or cannot constitute a thermostatic system
is to understand the time scales that separate processes into fast and slow. The reason for this is
that the “dynamics” in “thermodynamics” is a misnomer. The theory describes what can happen
between 

 

equilibrium

 

 states of thermodynamic systems, i.e., the theory is really comparative statics
insofar as it concerns net effects of moving between an initial static situation and a final one [1]
(where the chosen time scale affects what is and is not a “static situation” by affecting which
processes are considered negligibly slow). That is why we use the term “thermostatics” in this
article for what is often called “thermodynamics” in the literature. Thermostatics asserts whether
certain net effects are or are not possible without consideration of mechanisms by which these
effects could be attained. 

One requirement of the above considerations is that we need to recognize what 

 

equilibrium

 

means. This is not always easy for at least two reasons: 

1. Equilibrium is approached asymptotically and thus thermostatic systems never quite
reach it. 

2. Equilibrium means something very different on “ordinary” vs. on astronomical time scales.

The fact that equilibrium is approached asymptotically can be seen as follows. We consider
the 

 

state

 

 of a thermostatic system to be characterized by the values of some set of macroscopically
observable parameters (e.g., temperature, pressure, and volume). We use the term 

 

equilibrium state

 

to denote any state from which the system will not undergo any further spontaneous changes over
the time-scale under consideration. If we make the reasonable additional assumption that the rate
of change of a system’s parameter values is locally proportional to the system’s distance from
equilibrium, it follows that the system will approach but never reach its equilibrium state.

The fact that equilibrium means something different on different time scales is due to the very
large waiting times for relaxation of degrees of freedom corresponding to large activation energies.
Examples of such degrees of freedom include nuclear transitions. In fact, the “true” (infinite time)
equilibrium of any chunk of matter would have to be 

 

56

 

Fe [2]. Thus equilibrium is a notion that
makes sense only once a time scale has been specified.** We can say that a thermostatic system
is in equilibrium once all its degrees of freedom change so slowly that they can be regarded as
constant (i.e., not changing at all). In other words, the necessary condition for thermostatic argu-
ments is what is referred to as the separability of time scales.

Before considering how the subtle concept of equilibrium should be used in the life sciences,
we present the laws of thermostatics in the context of the simplest thermostatic systems where the
classical ideas apply rigorously. We thus take our thermostatic system to be 

 

homogeneous

 

*** and
occupying a well-defined region in space known as the 

 

control volume

 

. The paradigm example of
such a thermostatic system is a gas in a container. Historically, the ideal gas and the ideal gas law
have contributed a great deal to thermostatics. Without this example of a simple thermostatic system,
whose simple equation of state was known explicitly and allowed all properties to be calculated
analytically, the subject would have taken much longer to develop than it in fact took.

 

* The word “system” is unfortunately used in both the thermodynamics and the biology communities, often with a different
meaning in each. To avoid confusion, we introduced the term “thermostatic system” in this chapter to denote what
thermodynamicists refer to simply as “system” or sometimes (in chemistry) as “macroscopic system.”
** Connected to such a time scale 

 

∆

 

t

 

 at any temperature 

 

T 

 

is a closely associated energy scale 

 

∆

 

E, where 

 

∆

 

t

 

 

 

≈

 

 exp(–

 

∆

 

E

 

/

 

kT

 

)
gives the mean first passage time out of a valley with excitation energy 

 

∆

 

E

 

. Thus we could alternatively say that equilibrium
is a notion that does not make sense until an energy scale has been specified. 
*** A thermostatic system is said to be homogeneous when all measurable properties are the same at every point inside
the control volume.
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3.2 THE ZEROTH LAW

 

The zeroth law postulates the well-definedness of thermal equilibrium and a phenomenological
(ordinal) temperature scale. The postulate describes one possible result of establishing “thermal
contact” between two systems: when establishing such contact brings no sensible change in either
system, we say that the two systems are 

 

at the same temperature

 

. Furthermore, we postulate that
if thermostatic systems A and B have the same temperature and systems A and C have the same
temperature then it must be the case that B and C have the same temperature. 

 

3.3 THE FIRST LAW

 

The first law expresses the conservation of energy. The law was constructed from separate older
conservation laws for mechanical energy in mechanics and for caloric in the theory of heat. It
retrospect, the ability to rub two sticks together to produce heat flagrantly contradicts any conser-
vation of caloric, and it was clear to the scientists even before the first law that their laws had only
context-limited validity [3]. However, the one-way nature of the conversion — mechanical energy
to thermal energy — kept things mysterious and no doubt delayed the formulation of the combined
version. With the advent of the steam engine (and its immense economic importance), it became
possible to investigate the production of work from heat and the first law soon followed.

This conservation of energy was then used to 

 

construct

 

 a function of state known as internal
energy, 

 

U

 

. This function is defined for one system by how it changes: 

 

∆

 

U

 

 = 

 

Q

 

 + 

 

W

 

where 

 

Q

 

 is the heat entering the thermostatic system and 

 

W

 

 is work done on the system by its
surroundings. This formulation uses the interconvertibility of mechanical work and heat to combine
the separate conservation laws in mechanics and in the theory of heat into one larger law of
conservation of energy. This combined conservation law leads to a profound conceptual generali-
zation: heat and mechanical work are different forms of energy. The extent to which different forms
of energy can be converted into each other has been an issue that has initiated the field of
thermostatics and dominated it until this day. 

The first law can be extended into the chemical domain, i.e., it can include the energetics of
chemical reactions. We delay their discussion until after the presentation of the second law.

 

3.4 THE SECOND LAW

 

The second law is the only known physical principle that expresses the unidirectionality of time.
All other laws of physics allow for each possible process to occur either forwards or backwards.
Because the world as we experience it is unidirectional regarding time, the second law should play
a pivotal role in understanding the world.

There are many equivalent formulations of the second law [4]. Perhaps the most intuitive is in
terms of the second possibility concerning what can happen when two thermostatic systems are
brought into thermal contact. The first possibility was contact between two systems at equal
temperatures, in which case the zeroth law asserts that nothing happens. The second possibility is
thermal contact between two systems at different temperatures, in which case the second law asserts
that heat always flows from the hotter to the colder, i.e., from the thermostatic system at a higher
temperature to that at a lower temperature. In other words, it is impossible to have a process*
whose only net effect is to transfer heat from a cold reservoir to a hot one. Equivalently, it is
impossible to have a heat engine whose only net effect is to take heat from a single reservoir and

 

* A thermostatic 

 

process

 

 is defined as a succession of states through which a thermostatic system passes.
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convert it entirely into work. In fact, recent studies have adopted the useful convention of viewing
work as heat at infinite temperature, in which case the second formulation becomes a specific
instance of the first one. 

The second law is often expressed by saying that “energy is always degraded.” What this means
is that it spontaneously moves to lower and lower temperatures. Note that this encompasses both
friction in which work (infinite temperature heat) is degraded to heat at finite temperature, and
spontaneous heat flow, in which thermal energy at one temperature becomes thermal energy at a
lower temperature. In fact, it is remarkable that this one statement encompasses all irreversible
processes, i.e., provided no heat moves to a lower temperature, the process is reversible! For
mechanical processes, reversibility means only that no friction is involved. For thermal processes,
reversibility requires that all heat moves between systems at equal temperatures. For reversible
processes, we can 

 

construct

 

 an additional conservation law as shown below. 
Based on the second law, we can construct a second state function similar to internal energy.

This state function is 

 

designed

 

 to quantify the unidirectionality of time and is known as entropy.
While reversible processes cannot in fact occur, they can be approached to arbitrary accuracy, at
least as gedanken processes. In such processes, we define a conserved quantity, the entropy, again
by how it changes. For one system, the differential change in its entropy, 

 

S

 

, is defined in terms of
the differential amount of heat 

 

δ

 

Q

 

rev

 

 entering or leaving the system, where the 

 

rev

 

 subscript reminds
us that we can count this way only for reversible processes:

By the foregoing discussion, a reversible process will always keep the total entropy 

 

S

 

 (added
up over subsystems) constant because heat moves only between systems at the same temperature.
Irreversible processes on the other hand increase entropy. Note that for processes with friction,
entropy is produced because the appearance of heat corresponds to the appearance of entropy.
Similarly, when heat 

 

Q 

 

moves from a higher temperature 

 

T

 

1

 

 

 

to a lower temperature 

 

T

 

2

 

, the total
amount of entropy increases by

 

To calculate how the entropy of a certain subsystem changes, we have to calculate what would
happen in a reversible process that goes from the system’s initial to its final state. It is a fact that
all reversible processes would end up transferring the same amount of entropy to/from our sub-
system. We usually state this by saying that entropy is a function of state.

It is worth pausing here to discuss these ideas in light of the more modern statistical theories
of thermal physics. From this perspective, we think of heat as energy transfer that is completely
“thermalized,” i.e., as randomized as the temperature allows. Thermal energy at a high temperature
is more ordered than thermal energy at a low temperature. In this connection, work can be viewed
as heat from an infinite temperature system, i.e., not randomized at all but rather directible entirely
into lifting a weight. This randomization is at the heart of the statistical view of thermodynamics.
From this perspective, the second law describes how energy gets mixed up as it spreads out to the
many molecular degrees of freedom. A quantitative handle on this aspect of the subject comes from
the microscopic interpretation of entropy as the logarithm of the number of states consistent with
a given macroscopic state. In this context, the increase of entropy corresponds to things getting
mixed up and it is 

 

entropy production

 

 that gives us a quantitative measure of irreversibility.
In this regard, we mention a cautionary note: heat and work are 

 

not

 

 state functions but rather
transfers of energy. Just as work is energy 

 

flow

 

 that shows up as mechanical energy, heat is energy

 

flow

 

 that shows up in a purely randomized form. Thus, although the environment does work on
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Q
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our thermostatic system, all or part of this work could enter our system as heat. From a mathematical
perspective, heat and work are represented by differential forms that are not exact, i.e., they are
not in general the differentials of a function of state. As differential forms, they assign numbers to
processes (paths in the set of states) but not to states. (In contrast, functions of state, such as
temperature, assign numbers to states.)

Entropy has another interesting property. Recall that if we consider the amount of work
extractible from a mechanical process such as a water wheel, one pound of water moving one foot
lower can produce at most one foot-pound of work. Our definitions allow an analogous statement
for how much work can be produced by a certain amount of entropy moving (reversibly) from 

 

T

 

1

 

to 

 

T

 

2

 

: the maximum work is the product of the entropy that moved and the temperature difference.
To see this, consider a heat engine in which a thermostatic system acts in an intermediary role but
starts and ends in the same state. Such intermediary systems are called working fluids. Assume
that the working fluid picks up heat 

 

Q

 

1

 

 from system 1 at temperature 

 

T

 

1

 

 and deposits heat 

 

Q

 

2

 

 in
system 2 at temperature 

 

T

 

2

 

. By the first law, the work produced by the process will be the difference

 

Q

 

1

 

 – 

 

Q

 

2

 

. Because we are interested in the 

 

maximum 

 

work, we want the process to go reversibly
because any irreversibility will merely degrade some exergy (available work). Reversibly means
that 

 

Q

 

1

 

 = 

 

T

 

1

 

∆

 

S

 

1

 

 and 

 

Q

 

2

 

 = 

 

T

 

2

 

∆

 

S

 

2

 

, with 

 

∆

 

S

 

1

 

 = –

 

∆

 

S

 

2

 

. The above fact then becomes 

i.e., the maximum work is the famous Carnot efficiency  times the heat. 

 

3.5 STANDARD STATES AND TABLES

 

For both the internal energy and the entropy, the foregoing discussion talks only about changes.
Thus it follows that each of these functions is defined only up to an additive constant, which is
usually specified by the selection of a particular state for which the value of the function is to be
zero. The choice of such 

 

reference states

 

 with respect to which energies and entropies are calculated
is an important freedom that can be used to simplify a particular calculation. The older texts choose
standard temperature and pressure to define the standard states for all the elements, for which the
internal energy and the entropy are chosen to be zero. More modern sources use zero temperature
as the reference state for the zero of entropy, a choice particularly convenient for the third law.
Because ultimately our calculations deal with comparative statics, the choice of reference states
drops out and as long as we are careful and consistent, all choices are equally correct. Nonetheless,
switching between references that differ in their choice of standard states can be confusing. 

 

3.6 STATES VS. PROCESSES

 

Historically, thermodynamics was born as a theory of heat engines. Its growth was spurred primarily
by the success of the steam engine. A full generation later, in the hands of J.W. Gibbs, the subject
underwent its most profound transformation — it changed from a theory of processes to a theory
of states. Before this, it had only dealt with the transfer of heat and work between systems. After
the transformation, it became theory of equilibrium states for one system. The first law became

W T T S

T T
Q
T

T
T

Q

max = −( )

= −( )

= −






1 2

1 2
1

1

2

1
11

∆

1 2

1

−






T

T

 

DK3072_C003.fm  Page 87  Friday, October 20, 2006  1:13 PM



 

88

 

Systems Biology: Principles, Methods, and Concepts

 

dU

 

 = 

 

TdS

 

 – 

 

pdV

 

 = 

 

δ

 

Q

 

 + 

 

δ

 

W

where 

 

U, S, T, p

 

, and 

 

V

 

 all refer to the properties of a single system. The main impetus for the
transformation was the need to include chemical processes in the first and second laws. 

Gibbs noted that chemical phenomena were associated with heat and work and thus their
analysis should be combined with the thermodynamic laws. He achieved the required unification
by introducing the notion of chemical potential. The chemical potential, 

 

µ

 

i

 

, of the 

 

i

 

th molecular
species plays the role for molecules of type 

 

i

 

 that temperature plays for heat. When two systems
are brought into contact of a sort that allows transfer of species 

 

i

 

, mass of species 

 

i

 

 moves from
the system with the higher chemical potential to that with the lower one. Furthermore, the maximum
work that could be obtained from a spontaneous process of mass flow is the product of the mass
d

 

M

 

 and the chemical potential difference between the two systems

This forces

and adds new terms to the differential form of the first law

The notion of chemical potential extended the definition of a reversible process to mass transfer,
with reversibility holding in exactly those processes in which mass is transferred across zero
chemical potential differences. More interestingly, it can now be used to define reversible chemical
reactions to be those where the stoichiometric combination of the reactants’ chemical potentials
equals the stoichiometric combination of the products’ chemical potentials. For example, for the
reaction

between reactant species A and B forming product species C and D with stoichiometric coefficients

 

α

 

, 

 

β

 

, 

 

γ

 

, and 

 

δ

 

, the reversibility condition is

In fact this is also the equilibrium condition, with the result that a reaction is reversible if and only
if it takes place at equilibrium. 

Once chemical interconversion is allowed into the set of processes we consider, the reference
states with zero energy and entropy are no longer independently selectable. While such reference states
remain arbitrarily selectable for the 

 

elements

 

 in their natural states, they imply definite nonzero
values for chemical compounds. For example, we can take the energy and the entropy of gaseous
hydrogen and gaseous oxygen at STP* to be zero but then are forced to take the energy and entropy
for liquid water at STP to be the energy and entropy change associated with the reversible reaction
forming water from H

 

2

 

 and O

 

2

 

. 

 

* Standard Temperature and Pressure: zero degrees Centigrade and one atmosphere.
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α µ β µ γ µ δ µα β γ δ+ = + .
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3.7 REFORMULATIONS

 

Most physical theories admit reformulations, and such reformulations are important for making
the theory usable in a wide variety of contexts. The thermodynamic theory of states developed
above gives a complete characterization of equilibrium states for an isolated* system: its total
internal energy remains constant and any spontaneous process inside the system, i.e., interaction
among its subsystems, will increase the total entropy of the system. It follows that when entropy
is as large as it can get, no further spontaneous processes are possible and the system is at
equilibrium. Thus the final characterization is that entropy is maximized for a constrained energy.

While energy has become a familiar concept from mechanics, entropy has not fared nearly as
well. Gibbs made use of a general duality between objective and constraint functions in an
optimization problem to transform the condition of equilibrium into one that seems more palatable
for intuitions steeped in mechanics. Instead of saying that entropy is maximized subject to a fixed
energy, we can say equivalently that energy is minimized subject to a fixed entropy.

A similar reformulation is possible at the process level. There, the second law’s assertion that
entropy increases in any spontaneous process changes to an assertion that available work is lost in
any spontaneous process. Such available work was introduced by Gibbs and has enjoyed a recent
resurgence of popularity among engineering thermodynamicists under the name of 

 

exergy

 

. The fact
that exergy can only be lost is a common way to state the second law.

Closely related to exergy is the notion of free energy, also introduced by Gibbs. In fact, given
certain constraints on the allowable processes, free energy is just exergy. For example, for processes
at constant temperature and pressure, the change in Gibbs free energy 

 

∆

 

G

 

 of some system is exactly
the change in exergy of that system. 

Free energies are important in another context because isolated systems are not nearly as
common as systems that are coupled to their surroundings. If these surroundings maintain the pressure
and the temperature of the system at a constant value, then it is possible to consider a larger system
made up of our system and its surroundings. If we can consider this larger system isolated, then
the laws of thermodynamics as stated above characterize the equilibrium of the composite system.
When the surrounding system is large enough so that its temperature and pressure are effectively
unchangeable by interaction with our small system, then it turns out that the equilibrium of the
small system can be characterized by minimizing the free energy

Such reformulations of the principles are known as Legendre transforms. They have been
generalized beyond the usual free energies [5,6] to determine the equilibrium conditions for systems
in contact with surroundings that fix any function of state. While useful applications have yet to
be found, it is our belief that such generalizations will prove of interest for systems biology.

 

3.8 IMPLICATIONS FOR LIVING SYSTEMS

 

As noted above, thermostatics’ change from a theory of processes to a theory of states required
describing interactions between subsystems, each of which may be viewed as a thermostatic system
in its own right. In the process, our notion of thermostatic system lost some of its simple character
as a homogeneous region in space with well-defined boundaries. In fact, for chemical reactions,
the systems can consist of one type of molecule with a volume that is completely superimposed
on the volume of a second system consisting of different molecules. Recent analyses have gone

 

* An 

 

isolated

 

 

 

system 

 

is defined as any system that does not exchange matter or energy with its surroundings. A system’s

 

surroundings

 

 are defined as everything external to the system.

G U pV TS= + − .
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further and treated only the (say) vibrational degrees of freedom of certain molecules as a thermo-
dynamic system. These analyses are responsible for our modern notion that what is needed for
thermodynamic arguments is a separability of time scales. If equilibration within a certain degree
of freedom is sufficiently fast while its interaction with other degrees of freedom is significantly
slower, then this interaction can be thought of as taking place between different thermostatic
systems, each with its own temperature. In living things, the appropriate time scales for many
interactions have yet to be measured, but analyses of the thermostatics of cellular processes should
extend our current notions of thermostatic systems to new and biologically important examples.

The implications of the two thermostatic laws for living organisms have been addressed by
Erwin Schroedinger in his influential book from the mid-1940s entitled What is Life? [7]. He posed
and answered the question of how living things manage to maintain their organization despite
making extensive use of irreversible processes, which produce entropy. In order to maintain their
organization, living things have to dispose of this entropy. They manage to dispose of the entropy
produced, because they are not isolated systems but are in fact coupled to their surroundings through
the flows of ingested food and excreted waste. As long as the excreted waste carries significantly
more entropy out of the organism than the ingested food brings in, the entropy change inside the
organism can be maintained close to zero. One example of the molecular details for this mechanism
proceeds by the production of molecules such as adenosine triphosphate (ATP) that are rich in free
energy and can therefore be used as an exergy currency for cellular processes. Because spontaneous
processes are exactly those which degrade exergy, cells can accomplish any needed cellular pro-
cesses, including those which require input of exergy, by coupling the processes to ATP degradation
in such a way that the coupled processes create a net degradation of exergy in conformity with the
second law. 

3.9 THE ANALOGY BETWEEN SHANNON “INFORMATION” 
AND THERMOSTATIC ENTROPY 

The above-mentioned connection between entropy and randomness has a flip side — it can be used
to create a formal analogy between entropy and Shannon “information.” In fact, as defined in the
classic work by Claude Shannon [8–10], the “entropy” of a random variable* is exactly the average
amount of “information” per elementary signal in a very long sequence of signals: the log of the
number of possibilities. This metaphor has led to thermostatics-like analyses of coding algorithms
and has resulted in thermostatics-like theorems regarding the extent to which noisy communication
channels can be made immune to the noise levels. Despite these attempts, there is little agreement
regarding how exactly to merge the modern theories of Shannon “information” and thermostatics.
This failure will likely be remedied within some fields of systems biology where the chemical
degrees of freedom carry large amounts of Shannon-like “information” that must be transmitted
nearly free of error in communication-like processes. Determining the exact details of how the
foregoing connections between different theory-laden concepts can be done remains an important
open problem. 

3.10 FINITE-TIME THERMODYNAMICS

In the foregoing discussion, we mentioned reversible processes and the possibility of approaching
them with real processes. In point of fact, heat transfer can only approach reversibility as we slow

* The Shannon entropy has reportedly been named “entropy” because of a sarcastic practical joke played by John von
Neumann on the thermodynamically illiterate Claude Shannon. The story says that von Neumann, asked by Shannon how
to call “this strange H-function,” answered: “call it entropy”; no one understands what it is anyway … ” This joke, if the
story is true, has created confusion ever since.
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the process down. This is also true for chemical reactions and for all transport processes whose
rates are proportional to generalized forces (differences in intensive variables) that must be made
to approach zero as we approach reversible operation. 

This fact has spurred a body of results known collectively as finite-time thermodynamics
[11–14]. The central organizing fact is that once we require a process to proceed at a certain rate,
we are not able to make it approach reversibly. Bounding its rate away from zero can give positive
bounds on minimum entropy production (minimum exergy loss) that must accompany the process.
Finite-time thermodynamics has focused on maximizing power and on minimizing the dissipation
that must accompany a process taking place at a certain rate. This line of investigation is likely to
be useful for systems biology, where higher efficiency at the cost of lower power is not usually of
interest. While the efficiency of many of the processes so crucial for the bioenergetics of the cell
are well understood as measured in comparison to reversible processes, how they compare to
optimal processes subject to the constraint of operating at a given rate is not known. In an attempt
to pique the reader’s interest in more specialized monographs [11–14], we close our discussion by
mentioning a couple of the more intriguing results that have come out of this line of investigation.

In finite time, there are essentially two extremes of optimal operation corresponding to maxi-
mum power and minimum exergy loss. These extremes can be loosely identified with the points
of view of an industrialist who wants as much product as possible and of an environmentalist who
wants to minimize the expenditure of resources.

The maximum power operation of a process has no exact analog in traditional thermodynamics,
although it appears that simple and general principles may surround such operation. For example,
the efficiency of a heat engine operating at maximum power between a heat source at temperature
TH and a heat sink at temperature TC is quite generally given by 

a formula whose similarity to Carnot’s efficiency is striking.
Minimum exergy loss operation also points to a general principle. It turns out that there is a

distance on the set of states of a physical system and the minimum production of entropy is just
the square of this distance divided by twice the number of relaxations for the process. The distance
is defined using the second derivative of the system’s entropy as a metric matrix.* The result can be
generalized to quantify the losses that are incurred during the coevolution of two systems when
there is a cost to adjustment and one of the systems follows some prescribed path. This result,
known as the horse-carrot theorem, has been applied in thermodynamics, economics, and coding
theory [15–19]. Its implications for coevolution in biological systems are likely to be interesting.

Our final example is more speculative and concerns the question: Is it possible to construct
additional functions of state on par with energy and entropy? One hope for extending the construc-
tions afforded by thermostatics is to focus on a class of processes satisfying some optimality
condition such as minimum entropy production subject to some constraints. In this case, the
optimality condition represents an additional equation, and we should be able to use the additional
equation to construct a quantity that will be conserved for optimal processes of this type. There
will of course be a corresponding inequality for processes that are not optimal in the sense
considered. We believe that this could be carried out for appropriate models of biological systems;
the development presented above could serve as a steppingstone toward achieving this goal.

* This metric can be interpreted as an equivalent of Fisher’s statistical distance known from genetics. 

ηMaxP
C

H

T

T
= −1

DK3072_C003.fm  Page 91  Friday, October 20, 2006  1:13 PM



92 Systems Biology: Principles, Methods, and Concepts

REFERENCES

1. Tribus M, Thermostatics and Thermodynamics, Princeton, NJ: D. Van Nostrand, 1961.
2. Tolman RC, Thermodynamics and Cosmology, Oxford, UK: Oxford University Press, 1934.
3. Tisza L, Generalized Thermodynamics, Cambridge, MA: M.I.T. Press, 1966.
4. Pippard AB, Elements of Classical Thermodynamics for Advanced Students of Physics, Cambridge,

UK: Cambridge University Press, 1957.
5. Salamon P, The Thermodynamic Legendre Transformation or How to Observe the Inside of a Black

Box, PhD Thesis, Department of Chemistry, University of Chicago, 1978.
6. Salamon P, Andresen B, Nulton JD, Konopka AK, The mathematical structure of thermodynamics.

In Konopka, AK, ed. Handbook of Systems Biology, Boca Raton: CRC Press/Dekker, 2006.
7. Schroedinger E, What is Life? Cambridge: Cambridge University Press, 1944.
8. Shannon CE, A mathematical theory of communication. Bell. Syst. Tech. J. 1948; 27:379–423

(623–656).
9. Shannon CE, Communication theory of secrecy systems. Bell. Syst. Tech. J. 1949; 28:657–715.

10. Shannon CE, Prediction and entropy of printed English. Bell. Syst. Tech. J. 1951; 30:50–64.
11. Salamon P, Nulton JD, Siragusa G, Andersen TR, Limon A, Principles of control thermodynamics.

Energy 2001; 26: 307–319.
12. Sieniutycz S, Salamon P, Advances in Thermodynamics 4: Finite-Time Thermodynamics and Ther-

moeconomics. New York: Taylor and Francis, 1990.
13. Berry RS, Kazakov VA, Sieniutycz S, Szwast Z, Tsirlin AM, Thermodynamic Optimization of Finite

Time Processes. New York: John Wiley & Sons, 2000.
14. Bejan A, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-

Size Systems and Finite-Time Processes. Boca Raton: CRC Press, 1996. 
15. Salamon P, Berry RS, Thermodynamic length and dissipated availability. Phys. Rev. Lett. 1983; 51:

1127–1130.
16. Nulton J, Salamon P, Andresen B, Anmin Q, Quasistatic processes as step equilibrations. J. Chem.

Phys. 1985; 83: 334–338.
17. Salamon P, Komlos J, Andresen B, Nulton JD, A geometric view of consumer surplus with non-

instantaneous adjustment. Math. Soc. Sci. 1986; 13: 2.
18. Flick JD, Salamon P, Andresen B, Metric bounds on losses in adaptive coding. Inf. Sci. 1987; 42: 239.
19. Salamon P, Nulton JD, The geometry of separation processes: the horse-carrot theorem for steady

flow systems. Europhys. Lett. 1998; 42: 571–576.

DK3072_C003.fm  Page 92  Friday, October 20, 2006  1:13 PM



 

93

 

4

 

Friesian Epistemology

 

Kelley L. Ross

 

Systematic epistemology begins with Aristotle

 

 

 

because 

 

logic

 

 begins with Aristotle. If we ask for
reasons for our beliefs, we must be able to say why the reasons support or justify the beliefs. This
is what logic does. In a valid deductive argument, if the premises (the reasons) are true, then the
conclusion (the belief) must be true. In the analysis offered by logic, we can see why this is so. 

Aristotle realized, however, there was another question. How do we know if our reasons, our
premises, are true? We can provide more premises, reasons for the reasons, but this only delays,
not resolves the issue, since we can ask all over again for the justification of the new premises.
Providing reasons for reasons is the “regress of reasons,” and Aristotle realized that an 

 

infinite

 

regress, being impossible, would settle nothing. So how can the regress of reasons end? Only if
there are propositions that, for whatever reason, do not need to be 

 

logically

 

 proven, i.e., do not
need other reasons. These would be “first principles,” 

 

archai

 

 in Greek, 

 

principia

 

 in Latin. Why
first principles would not need to be proven is the “Problem of First Principles.” Aristotle’s answer
to the problem became the dominant one: First principles do not need to be proven, because they
are 

 

self-evident

 

, i.e., one knows them to be true just by 

 

understanding

 

 them. 
Aristotle did not believe that we come to understand first principles just by thinking about

them. He was at heart an empiricist, believing that knowledge comes from experience. He realized,
however, that first principles are going to be general propositions, about universals, while descrip-
tions of experience are particulars, about individual things. To get from the individuals to the
universals is then the process of logical 

 

induction

 

. Experience is examined, and a multitude of
particular truths accumulated, until a generalization, to universals, is made. Aristotle realized that
there is a difficulty here. How do we know 

 

how many

 

 individuals need to be examined before a
generalization can be made? This is the “Problem of Induction.” A great many white swans can
be examined before one happens on Australia and suddenly discovers black swans. Aristotle’s
answer connects up with his answer to the Problem of First Principles. The idea is that when we
get close enough to a first principle, we are able to make an intuitive leap, an act of “mind” (

 

noûs

 

in Greek), by which we achieve an understanding of the principle and its self-evidence. This is
possible for a metaphysical reason: the mind absorbs (abstracts) the 

 

essence

 

 (

 

ousía

 

 in Greek) of
the matter from the objects. An essence is what makes something what it is, and in Aristotle’s
metaphysics, the form or essence of a thing is its 

 

actuality

 

.
It is important to remember what induction is supposed to be in this theory. It is a process of

discovery, not of justification. That is how the Problem of Induction is resolved. As discovery, in
turn, induction is a process in which truth is brought to the mind. Individuals are examined until
the essence stands out. The mind is thus relatively passive, lying open to experience, until the
moment when it intuitively grasps the truth. The early modern theorist of induction, 

 

Francis Bacon

 

(1561–1626), thus required that investigation takes place without prejudice or preconception. For
centuries, this all seemed reasonable. 

While Aristotle expected that every discipline of knowledge would take the finished form of a
system of deductions from first principles, there was only one that looked anything like that in his
day. That was geometry. Euclid’s geometry identified five axioms and five postulates (and some
definitions) from which a satisfyingly large system of theorems could be derived. An axiom
(“worthy”) was regarded by all as self-evident, while postulates were somewhat less so. A proposition
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“postulated” would be one that we discover we need in order to prove theorems that we expect to
be true, or that we are just experimenting with. Many mathematicians doubted that Euclid’s Fifth
Postulate, the Parallel Postulate, was self-evident, and centuries followed in which proofs were
sought for it. With a proof from the other axioms and postulates, the Fifth Postulate would be a
theorem, not a first principle. No proof was ever found. Logically, postulates work in no different
a way than axioms, which is why the first principles of a formal deductive system today tend to
just be called “axioms,” and the system itself an “axiomatic” system, even if the thought is that
such axioms are only “postulated.” It is noteworthy, however, that the original terminology reflected
some uncertainty about the self-evidence of five of the propositions required for Euclid’s axiomatic
system. There should be no uncertainty about propositions that 

 

ought to be

 

 self-evident. 
Curiously, as the centuries were to pass, nothing besides geometry would be developed as an

axiomatic system. Nevertheless, Aristotle’s view of knowledge was generally accepted, outside of
the Skeptics, by all. Perhaps the first serious crack in the dike came with the Nominalists, like

 

William of Ockham 

 

(1295–1349), who rejected the existence of Aristotelian essences. This would
remove the metaphysical basis for self-evidence, damaging the solutions to the Problems of First
Principles and of Induction. But the Aristotelian consensus only really broke down with the advent
of modern thought. First of all, there was science. 

 

Copernicus 

 

(1473–1543) turned the universe
upside down, but his theory had little to do with observation or induction — at the time, it had no
real evidence in its favor. 

 

Galileo 

 

(1564–1642) vindicated Copernicus with actual observations, but
he also did something unanticipated by Aristotle, applying mathematics to physics. Mathematics
never stood in much need of experience, and mathematicians like 

 

Johannes Kepler 

 

(1571–1630),

 

René Descartes 

 

(1596–1650), and 

 

Gottfried Leibniz 

 

(1646–1716) were drawn to rationalism, claim-
ing sources of rational knowledge independent of experience. Kepler, although responsible for one
of the greatest empirical discoveries in the history of astronomy that the orbits of the planets are
ellipses, not circles, nevertheless tended toward an outright Platonism, the likes of which usually
draws only sneers from recent historians and philosophers of science, and dismissal as no better
than mysticism. Although the 

 

nova scientia

 

, the “new knowledge,” was analyzed in terms of
induction by the likes of Bacon, its practice seemed anything but. Mathematics can be belittled as
a human invention, as by Aristotle, but this was not the inspiration of its greatest practitioners. Nor
could practicing induction alone explain how mathematics applied to the models of the real world
so powerfully, opening secrets of nature undreamt by the ancients.

While these developments tended to discredit the empiricist and inductivist side of Aristotle,
worse was to follow for the other side. The rationalists, although content with self-evidence and
constantly appealing to it (Descartes’ “clear and distinct ideas”), discredited it with their practice,
since they developed philosophical systems radically different from each other. If these were all
based on self-evidence, how could they be different? Self-evidence, indeed, leaves no obvious way
to settle disagreements. If someone denies the self-evidence of a first principle, they must just not
understand it. It cannot be vindicated by logical proof from more ultimate premises, since by
definition, there cannot be any. This painted rationalism into a corner with no escape.

The Aristotelian edifice of knowledge was finally taken down in a combined attack of empir-
icism, nominalism, and skepticism by 

 

David Hume 

 

(1711–1776). Few propositions were left as
self-evident by Hume, since they had to pass the test that they could not be denied without
contradiction. This even undermined something that had never been doubted in the Middle Ages —
the Principle of Causality — that every event has a cause. Hume could easily imagine the contrary.
Things could just happen spontaneously and inexplicably. This returned the Problems of First
Principles and of Induction in their full force. Hume, however, is commonly misunderstood. Hume

 

believed

 

 in causality, he just said that it would not be rationally 

 

justified

 

. This would make it in
Euclid’s terms, not an axiom, but a postulate. Yet Hume is commonly taken to have expected that
causality 

 

could

 

 be violated. No. He was best understood in this by 

 

Immanuel Kant 

 

(1724–1804),
who said that Hume’s critics “were ever taking for granted that which he doubted, and demonstrating
with zeal and often with impudence that which he never thought of doubting…” Kant’s distinction
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was between the 

 

quid facti

 

, the content of propositions (the matter of fact), and the 

 

quid juris

 

, their
justification (the matter of law, or right), i.e., where the truth comes from. Hume had no problem
with the 

 

quid facti

 

, just with the justification. Kant also understood that Hume’s skepticism actually
needed to go further, since he realized that even the axioms of geometry, which Hume regarded as
self-evident, could be denied without contradiction. When systems of non-Euclidean geometry were
subsequently constructed, this demonstrated in the most tangible way that this was true. Kant even
denied that 

 

arithmetic

 

 was self-evident, a notion that remained bizarre until it was demonstrated
in the 20th century that an axiomatic system of arithmetic required, indeed, axioms, just like
geometry. Few regard these axioms as self-evident: in practical terms, they are postulates.

Kant himself developed an argument that principles like causality were justified because they
were “conditions of a possible experience,” i.e., that as postulates necessary for the world of ordinary
experience, their contrary could not be conceived except in terms of a chaotic, dissociated, and,
especially, unconscious reality. This, however, whatever its merits as an argument, limited knowl-
edge to “possible experience” and could not resolve metaphysical or moral questions that did not
rest on the factual character of perception. A general reconsideration of justification did not come
until a successor of Kant, 

 

Jakob Fries 

 

(1773–1843).
Fries distinguished three modes of justification, which he called “proof,” “demonstration,” and

“deduction.” All of these were terms that originally had simply meant proof, i.e., logical derivation.
That meaning is confined to “proof” itself in Fries. “Demonstration” now means the justification
of a proposition by referring to its ground in perception. This kind of thing had pretty much been
taken for granted by everyone for centuries, until called into question by Descartes, who did not
see how perception could provide knowledge of external objects when perceptions could be
unreliable, even hallucinatory. Empiricism did not help. Indeed, 

 

George Berkeley 

 

(1685–1753)
would argue that 

 

matter

 

 did not even exist, since we do not perceive it existing independently of
our perceptions. Hume, as a skeptic, could take it for granted that perception, indeed, could prove
no such thing. Fries, however, as a Kantian, will see matters rather differently. Kant saw the objects
of experience, phenomenal objects, as existing 

 

in

 

 experience, not outside of it. Kant called this
“empirical realism.” This provided for Fries a content of “immediate knowledge,” or “intuition,”
so that as truth is the correspondence of knowledge to its objects, perceptual knowledge is the
correspondence of mediate knowledge, i.e., discursive propositions (in some language), to imme-
diate knowledge, i.e., phenomenal objects. Most modern epistemology still struggles hopelessly
with this, and “externalist” theories still think of knowledge as justified by, for instance, a causal
connection between objects and knowledge. But an effect does not need to resemble its cause, and
such a causal connection suffers precisely from the Cartesian objection that our perceptions might
be caused by something other than what we think.

“Immediate knowledge” and “intuition” in Fries are not what we might think. Usually these
terms are used to mean beliefs we have with some kind of subjective certainty, or as infallible
items of discursive knowledge. But Friesian immediate knowledge does not consist of beliefs at
all (just of the phenomenal objects themselves), and the possible errors in matching up immediate
knowledge with actual beliefs, i.e., with the discursive statements that express them, means that
articulated knowledge, mediate knowledge, will always be 

 

fallible

 

 and 

 

corrigible

 

. In other words,
we can make mistakes in describing what our perceptions reveal, but we can also correct them.
The important feature of both procedures is that our perceptions must be consulted. If we wonder
whether the bedroom window is open, and cannot remember, we have to go look, or get someone
else to look. There is no other way to do it, and no 

 

a priori

 

 reasoning, apart from experience, that
will settle the case.

Friesian “demonstration” will not help in the problem of Aristotelian first principles, since these
are abstract and universal, and not about particular perceptual objects. Justification for them Fries
calls “deduction,” borrowing the term from Kant, as Kant had borrowed it, along with 

 

quid juris

 

,
from law, since, he said, the deduction shows the 

 

quid juris

 

, i.e., the justification. Kant’s “Tran-
scendental Deduction” contained his argument for the truth of principles like that of causality. Fries
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did not think that such arguments could avoid circularity. Instead, the nature of the ground of first
principles is found by a process of elimination: It is not mediate, since a mediate justification is
going to mean either (1) a proof, which is ruled out for first principles, or (2) self-evidence, which
in Kantian philosophy only means 

 

analytic

 

 truths, i.e., propositions that cannot be denied without
contradiction (Hume’s criterion). This means no more than truths of logic and definitions, where
definitions themselves can be “real,” i.e., based on some natural connection or merely conventional.
A definition, then, can function as a postulate. The ground of a first principle, consequently, or a
“real” definition, can only be immediate. But, for a principle like causality, the ground cannot be
intuitive since, agreeing with Hume, both Kant and Fries rule out that kind of self-evidence.
Therefore, the “deduction” is that first principles are grounded in “nonintuitive immediate knowl-
edge,” which is the signature doctrine of Friesian epistemology.

What is “nonintuitive immediate knowledge” going to mean? It means that we know things
that we are 

 

unaware of

 

 but that we use constantly anyway. This is paradoxical but now obvious in
instances such as where we use the rules of the grammar of a language, without being aware of
what those rules are. When we identify such things, there is no logical or intuitive property that
secures their truth. Similarly, we act as though every event has a cause, even when we do not
articulate such a principle. So what do we do? The precedent, indeed, antedates Aristotle. The idea
that there are items of knowledge that we are unaware of but use anyway goes back to 

 

Plato

 

, who
thought that knowledge is recollection, i.e., items in memory but forgotten. As it happened, this
feature of Plato’s theory was superseded by Aristotle’s analysis, not only in the later Middle Ages
when Aristotle was accepted root and branch but even in the Neoplatonic revival of Late Antiquity,
which attempted to reconcile Plato and Aristotle. Since now the Aristotelian approach of self-
evidence is no longer viable, we must consider how Plato handled verification in his theory of
recollection. Unfortunately, there is no easy answer to this, since Plato was nowhere near as
systematic as Aristotle in this respect, and nothing like formal logic existed yet. What we have are
examples, and Plato’s examples always involve Socrates. The classic example is in Plato’s dialogue,
the 

 

Meno

 

, where Socrates elicits a geometry construction simply by asking questions. This is Plato’s
notion of “Socratic Method.” The logic of this goes back to Socrates himself. Socrates, as it happens,
did not ask for “reasons for reasons.” Socrates solicited beliefs and then examined their logical
consequences, exposing inconsistencies. The logic of this only now is apparent. Aristotle was asking
for 

 

verification

 

, i.e., what it is that makes something 

 

true

 

, while Socrates was effecting 

 

falsification

 

,
since inconsistencies — contradictions — show that something is 

 

false

 

. Today, when the grammar
of a language is described and rules formulated, they are tested by comparison with relevant
examples of usage. If usage violates a rule but “sounds right” to a native speaker, the rule may be
wrong.

The significance of Socratic Method for modern epistemology was only properly appreciated
by the 20th century philosopher who revived Friesian philosophy, 

 

Leonard Nelson 

 

(1882–1927).
Its role, indeed, was not in identifying the 

 

quid juris

 

, which is handled by the “deduction” of
nonintuitive immediate knowledge, but is specifying the 

 

quid facti

 

, the actual content of the
nonintuitive truths. Nelson, however, expected Socratic Method to be easier than it is. Socratic
Method is limited by its data, i.e., by the input of beliefs, and by the fact that a contradiction only
shows that 

 

some

 

 belief is false, without it always being clear 

 

which one

 

. Socratic Method thus
simply imposes a coherence test of truth, whose greatest demand is on reflection and the imagina-
tion. The use of nonintuitive immediate knowledge does not spontaneously produce the correspond-
ing belief. This must be 

 

generated

 

 in mediate knowledge by reflection, and the ability to do so, to
come up with new ideas in the light of observation, is a function of imagination. This is then the
grist for a coherence test. Coherence, however, does not guarantee truth, since the proper belief
may not yet figure in the discussion. Thus, the principle of causality that every event has a cause was
hardly even clearly stated until Hume. A Medieval critique of causality, in many ways like Hume’s,
that of 

 

al-Ghazâlî 

 

(1059–1111), did not question the causal principle itself, only the certainty of
laws of nature and the identity of 

 

particular

 

 causes.
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The importance of falsification in epistemology was only fully appreciated by the philosopher
of science 

 

Karl Popper 

 

(1902–1994), who observed that the practice of science was not Baconian
induction, but by falsification. Thus, the process of 

 

discovery

 

 of scientific theories is of no final

 

logical

 

 significance. Induction, remember, required observation of empirical events with an open
mind, waiting for generalizations to suggest themselves, i.e., for the essence to stand out. According
to Popper, we can make up any theories we like, about things that are even unobservable, a process
where the proper view may even come to us in a 

 

dream

 

 (as has happened in the history of science),
and this will all be proper science as long as we can make 

 

observable predictions

 

 from the theory.
If the predictions are correct, this may increase our confidence in a theory, but it does not prove
the theory true. All the success of Newton’s physics did not prevent its replacement by Einstein’s.
If the predictions are 

 

not

 

 correct, however, then logically the theory or something about it, is
falsified. If there is no alternative available to the theory, then the falsifications can be regarded as
“anomalies,” hopefully to be accommodated; but if a new theory can make predictions that the old
theory cannot, the new one will tend to replace the old. Like Socratic Method, however, the final
truth may simply not have been thought of yet. This, indeed, is what people in science now tend
to think.

Popper saw his own theory as a version of Friesian epistemology, which he had learned about
from his cousin 

 

Julius Kraft 

 

(1898–1960), who had been a student of Nelson and an advocate of
his work. Popper thought that falsification could be used in all areas of philosophy, but he was not
familiar with the practice of Socratic Method, as Nelson was, nor was he any more aware of the
limitations of the method. At least in science, if a startling prediction can be made, as in Einstein’s
prediction that the apparent positions of stars would be displaced around the sun, something
observable, though not yet observed, during a total eclipse of the sun, then this places a very hard
limit on theories that are or are not consistent with it. In metaphysics or ethics, however, the limits
of coherence are more fluid and it is easier to argue about what are the relevant facts of the matter.
For instance, those so minded can still disparage capitalism, which has produced unprecedented
wealth and freedom, as a system which perpetuates poverty and oppression, even while preferring
systems, as in the Soviet Union, which manifestly 

 

did

 

 produce only poverty and oppression. Since
Socratic Method requires reflection and imagination, its success will be the most limited with those
who most lack these facilities.

If the Kantian 

 

quid facti

 

 and 

 

quid juris

 

 are secured by Socratic Method and the “deduction”
of nonintuitive immediate knowledge, then, as in Aristotle, the next question to ask is the meta-
physical one. What is the nature of the 

 

existence

 

 of the nonintuitive immediate ground of knowledge?
In this respect, the Friesians, both Fries and Nelson, did not advance beyond Kant, who would
simply have said that the ground lies in Reason. Kant, however, did not believe that Reason was
necessarily just a subjective faculty in our minds. He realized that we have an urge to speak beyond
the limits of a “possible experience,” to describe objects that do not exist phenomenally, but only
among “things-in-themselves,” i.e., objects as they exist apart from experience — such as God,
free will, and the immortal soul. Kant, with his principle of a possible experience, did not believe
we could have 

 

knowledge

 

 of such objects, but he did think they could emerge with some different
justification in morality and religion. Fries was less agnostic, since he thought that the principle of
a possible experience was unnecessary. If there was nonintuitive immediate knowledge about
transcendent objects, it could be handled like anything else.

This does not help much with the metaphysical question. “Reason” still does not answer it. If
there are objects of nonintuitive immediate knowledge, our only precedent for describing them is
in Plato or Aristotle. Indeed, we need something like Aristotle’s essences, but without some of their
features. They do not become intuitively evident, through induction or anything else. Just what
their content is will always suffer from the uncertainties of the coherence test of evaluation. Thus,
we are not 

 

directly acquainted

 

 with essences as Aristotle would have thought. This lack of direct
acquaintance is the defining feature, however, of Plato’s 

 

Forms

 

, which are only “remembered” from
our sojourns between lives. Aristotle’s main objection to the Forms was that they were in a different
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reality, a transcendent World of Forms, and not in the objects themselves. This point can be well
taken. But “transcendence” after Descartes or Kant does not mean a different reality. If the “Form”
is in the thing-in-itself, then it is indeed transcendent, i.e., outside of phenomena and possible
experience, but still in the present object and the present world. So, as often happens in philosophy,
the ancient opponents are both right, just in different ways.

And we must remember that “essences” or “Forms” include things like the Laws of Nature.
Scientists tend to break down into realists, who expect that the Laws of Nature are “in” the objects
or “out there” in the world, or the positivists, who do not care, profess agnosticism, or like arguments
that metaphysical questions are meaningless. A contemporary mathematician, like 

 

Roger Penrose

 

,
does not think that alternatives to realism even make sense — though, of course, as a mathematician,
he tends toward the traditional mathematician’s Platonism. Now, however, if Kantian and Friesian
epistemology can reconcile Platonic and Aristotelian metaphysics, the “out there” view is perfectly
reasonable.

Kant had more to go on to limit knowledge to the world than his principle of a possible
experience. He realized that, in the history of philosophy, attempts to construct knowledge about
transcendent objects resulted in 

 

Antinomies

 

, i.e., dilemmas where the arguments for contradictory
theses are equally good. So it was not just that God, freedom, and immorality transcended experience,
it was the problem that a coherence test had no way to really prefer one view over its opposite.
That the limitation apparently applies to what are conceived as transcendent 

 

objects

 

, and not just
the abstractions of Platonic Forms or Aristotelian essences, is significant if we think that the only
objects are phenomenal objects, which may exist transcendently, in themselves, but which never-
theless are not separate from the world. Another feature of the problem, however, is that even
phenomenal objects can be conceived with characteristics that could only apply to them in them-
selves — and that is to be in some way 

 

unconditioned

 

. Moral freedom is to possess an unconditioned
causal agency. Even the Skeptic Hume rejected such freedom, because he thought it violated causality.
Kant thought that it does not violate causality as such, but depended on the 

 

way

 

 that causality is
applied: whether as a continuous series, going into indefinite past and future, or as a series with
an origin, i.e., as the causal act of free will. The problem with unconditioned realities applies to
the world itself, since the universe 

 

as a whole

 

 is an independent, unconditioned object. Thus Kant
described the finitude or infinitude of space and time as itself an Antinomy. This was a dilemma
only seriously addressed by Einstein’s theory that space is finite but unbounded (using a non-
Euclidean geometry); but then at present, the observational evidence, for a finite observable (but
actually infinite) universe, is against it. So to most astronomers now, Einstein’s solution to the
Antinomy is no longer available. Kant thought that Antinomies over God, freedom, and immorality
might be resolved in morality, but Fries and Nelson continued to take seriously the limitations of

 

theoretical

 

 knowledge.
This limitation produced in Fries another epistemological feature. Kant had viewed religion as

purely a function of morality (not itself a function of a possible experience), and Fries was going
to agree with Kant that we certainly have no 

 

perceptions

 

 of transcendent objects. Fries, however,
believed that there was more to religion than morality, and that religious feelings were about
something real, even if they were neither perceptions nor intuitions. He therefore distinguished

 

Wissen

 

 (knowledge), which is empirical and phenomenal knowledge, and 

 

Glaube

 

 (belief), which
is derived from nonintuitive immediate knowledge, from 

 

Ahndung

 

 (intimation, 

 

Ahnung

 

 is modern
German), which is a feeling that can be associated with possible transcendent or unconditioned
objects, even while providing no knowledge of them. But for Fries, the feelings are esthetic, i.e.,
of the beautiful and the sublime. A stronger theory was put forward by an early associate of Nelson,

 

Rudolf Otto 

 

(1869–1937). Otto pointed out that religion contains a characteristic category of
valuation, the 

 

sacred

 

 or 

 

holy

 

. The character of the holy and our feelings about it are distinct from
either the moral or the merely esthetic. It is, in Otto’s neologism, 

 

numinous

 

. In these terms, religion
is not just about the moral or the beautiful, the majestic or awesome (i.e. sublime), it is about
something 

 

uncanny

 

, something that can be supernaturally frightening. In its rawest and simplest
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form, this is the feeling one gets walking past a cemetery after dark. That is a moment largely free
of esthetic value, though people often try to invoke it in art. But it also ranges to the curious “fear
of God”: an expression that can refer neither to fear of harm from an evil being, nor fear of damage
from some overpowering and uncontrolled force, since God is thought of as good, whose intentions
and powers can contain nothing to fear. God would be “feared” only because he would be unlike
any natural object, something, in Otto’s words, “wholly Other.” Even in a religion without a God,
like Buddhism, there is no lack of the sacred and even the uncanny.

The Friesian School is an obscure chapter in the history of philosophy. Yet some of those
subsequently influenced by Fries and Nelson, like Karl Popper and Rudolf Otto, are usually familiar
to those who study philosophy of science and philosophy of religion, respectively. What is unfa-
miliar is the larger context for their thought, where Friesian epistemology and metaphysics address
issues that go from the earliest days of Western philosophy to the changes that heralded the
beginning of Modern philosophy. The mainstream of academic philosophy in the 20th century
ended up as little better than a triumph of Nihilism, using science to demolish religion, and then
using sterile irrationalities like “deconstruction” even to demolish science. Having given up hope
in knowledge, “Theorists” (as they like to be called) then head directly for uncritical and illiberal
versions of political activism, whose Marxist roots are usually all too obvious. This process is ugly
and dispiriting. But alternatives exist. Kant is still the watershed of Modern philosophy, but his
wisest successors, like Fries and 

 

Arthur Schopenhauer 

 

(1788–1860), are overlooked or belittled,
in favor of monsters like G.W.F. Hegel or Friedrich Nietzsche. It remains to be seen whether the
tradition, a ship close to capsizing, will be able to right itself and go forward.
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A

 

BSTRACT

 

The advent of the Enlightenment entailed a radical shift in worldviews from one wherein life dominates
all events to the perspective that all phenomena ultimately are elicited by encounters between lifeless,
unchanging particles. A necessary casualty of this shift has been the notion of organic behavior. The
possibility exists, however, that both the pre- and post-Enlightenment attitudes are extremes, and that
a general, more complete description of nature might lie between these poles. One useful tool for such
interpolation appears to be Karl Popper’s definition of propensity as an agency that is intermediate to
deterministic force at one end and pure chance at the other. Another is Robert Rosen’s description of
organic behavior as self-entailing. One way of interpreting self-entailment is to identify it with the
influence of the aggregate configuration of processes upon the structure and composition of the organic
system. To paraphrase Alfred North Whitehead, the creature is derivative of the creative process. One
particular embodiment of the top-down influence of processes upon components might be akin to the
action of autocatalysis among propensities, the effects of which can be measured using network and
information theories. Once one expands the scope of consideration to include boundary conditions as
well as dynamics, it then can be argued that the organic narrative is actually more compact than the
conventional neo-Darwinian construct. Furthermore, the revised organic narrative provides a more appro-
priate metaphor for other self-organizing systems than did classical organicism, and it has the advantage
of serving as a more congenial setting within which to portray the origin of life.

 

5.1 INTRODUCTION

 

Fascination with organic behavior held sway over much of Western thought for centuries preceding
the dawn of the Enlightenment. One encounters the metaphor of human institutions in the guise
of organisms as early as Aristotle and Paul of Tarsus. By way of contrast, Democritus and Lucretius,
with their view on nature as comprising encounters between unchanging, lifeless atoms, were
notable for being exceptions to the prevailing view that the universe was suffused throughout with
life [1]. So dominant was the vision of the ubiquity of life that the overriding challenge to
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philosophical thought before the 17th century had been to explain somehow the existence of death
in the world.

The situation changed radically with the advent of Newton and the publication of his 

 

Principia

 

,
which (by accident) [2] obviated the necessity to invoke living agencies to explain the movements
of the spheres. Thereafter the fashion in natural philosophy quickly came to emphasize the material
outlook of Hobbes in conjunction with the mechanical notions of Descartes. Lucretius would have
found himself quite at home with the precipitating consensus that the world is dead in all its
dimensions. Living beings became annoying exceptions in the world of the dead, and how to explain
the origin of the “epiphenomenon” called life has become a vexing conundrum for contemporary
thinkers.

One necessary casualty of the Enlightenment was the notion of organic behavior. True, remnants
of the organic metaphor remained in the writings of Liebnitz, Comte, Spencer, and Von Betalanffy,
but by and large organicism has been eschewed by modern thinkers (and not entirely without
justification, it should be added. Any number of totalitarian leaders over the past two centuries
have invoked the organic metaphor to justify their own oppressive agendas.)

The extremism of dictators, however, provides a clue to resolving the confusion left in the wake
of the Enlightenment revolution. It is easy to recognize that the predilection of the ancients and
medieval scholastics to see life everywhere was an extreme view, but one can also hold that it
likewise remains a radical stance to view the world as dead, through and through. Organicism,
because it focused primarily upon those rigid, almost mechanical aspects of organismal behaviors,
also could be classified as extreme. Is there indeed no refuge from such radical caricatures of the
world in which we live — some narrative of behavior that portrays a more balanced dialogue
between the quick and the dead? [3] Here, the reader’s attention is drawn to the domain of
ecosystems. In a world where phenotypic characteristics appear to be the ineluctable consequences
of genomic traits, the study of ecosystems affords a refreshing breath of freedom. As the renowned
developmental biologist, Gunther Stent so neatly puts it, 

 

Consider the establishment of ecological communities upon colonization of islands or the growth of
secondary forests. Both of these examples are regular phenomena in the sense that a more or less
predictable ecological structure arises via a stereotypic pattern of intermediate steps, in which the
relative abundances of various types of flora and fauna follow a well-defined sequence. The regularity
of these phenomena is obviously not the consequence of an ecological program encoded in the genomes
of the participating taxa [4].

 

When viewed in a Newtonian context, the relative independence of ecosystems from the
mechanics of genomes leads some to regard the concept of “ecosystem” as irrelevant — they see
the biotic community as nothing more than stochastic disarray [5]. Obviously, such conclusion was
not what Stent had in mind. Rather, it appears he may have been making the rather bold suggestion
that ecosystems come closer to the crux of organic behavior than do organisms themselves. That
is, ecosystem behavior is ordered to a degree, but that degree falls pointedly short of mechanical
determinism. Just perhaps, then, ecosystems offer the desired refuge from extremism.

Another inference we might draw from Stent’s comments is that mechanisms are not the only
causal entailments at work in ecosystems. Such a conclusion, however, conflicts with the meta-
physics underlying all of scientific thought since 

 

Principia

 

, which allows for only two types of
causalities — material and mechanical. Robert Rosen, among others, has also questioned the
assumed completeness of mechanical causal entailment in living systems [6]. He illustrates such
incompleteness by referring to the rational numbers, which seem at first glance to be arbitrarily
dense — between any two rational numbers it is possible to find an infinity of other rational
numbers. Yet we know from number theory that the rational numbers are incomplete as regards
our conception of what constitutes a number. Between any two rational numbers one can also find
an infinity of irrational numbers. Kurt Gödel was able to show with his Incompleteness Theorem

 

DK3072_book.fm  Page 102  Thursday, October 19, 2006  6:21 PM



 

Reconsidering the Notion of the Organic

 

103

 

that any attempt to formalize completely a notion of mathematics will comprise a syntactic truth
that is always narrower than the whole set of truths about the mathematical concept itself. (Some
unformalized semantic residue always remains.) Whence, Rosen goes on to argue that the formal-
isms of physics describing the causal entailments in mechanical systems will perforce remain
incomplete descriptions of organic behavior. It seems that in our zeal to apply Occam’s Razor and
avoid an “alpha type error” (the assumption of false agencies), we have gone to an extreme, thereby
committing a “beta type error” by proscribing any forms of causal entailment other than those
material and mechanical.

 

5.2 CHANCE AND PROPENSITIES

 

Yet another aspect of the radical minimalism inherent in the Newtonian worldview has been
provided by Karl R. Popper [7]. Popper noted how mechanical causality exists only at one pole
(extreme) of the causal spectrum: Either a cause has a precise effect or it has none. There is
positively no room for chance in the Newtonian rendition of the world. Should any particle anywhere
swerve from its lawful course, it would eventually throw the entire universe into shambles. Yet
chance and contingency seem to be very much evident in natural phenomena in general and in
biological systems 

 

a fortiori

 

. Conventional wisdom has reconciled mechanism and chance via what
is commonly referred to as the “Grand Synthesis.” Upon closer inspection, this “synthesis” resem-
bles nothing more than a desperate and schizoid attempt to adjoin two mutually exclusive extremes.
That is, narrative is constantly switching back and forth between the realms of strict determinism
and pure stochasticity, as if no middle ground existed. Once more, the picture is incomplete, and
a more effective reconciliation, Popper suggested, lies with agencies that are intermediate to
stochasticity and determinism. Toward this end, he proposed a generalization of the Newtonian
notion of “force” that extends into the realm between strict mechanism and pure chance. Forces,
he posited, are simple idealizations that exist as such only at the extreme of perfect isolation. The
objective of experimentation is to approximate to the fullest extent possible the isolation of the
workings of an agency from interfering factors. In the real world, however, where components are
loosely, but definitely coupled, and all manner of extraneous phenomena interfere, he urged us to
consider the more general notion of “propensities.” 

A propensity is the tendency for a certain event to occur in a particular context. It is Bayesian
in that it is related to, but not identical to, conditional probabilities. Consider, for example, the
hypothetical “table of events” depicted in Table 5.1, which arrays five possible outcomes, 

 

b

 

1

 

, 

 

b

 

2

 

,

 

b

 

3

 

, 

 

b

 

4

 

, and 

 

b

 

5

 

, according to four possible eliciting causes, 

 

a

 

1

 

, 

 

a

 

2

 

, 

 

a

 

3

 

, and 

 

a

 

4

 

. For example, the
outcomes might be several types of cancer, such as those affecting the lung, stomach, pancreas or
kidney, while the potential causes might represent various forms of behavior, such as running,

 

TABLE 5.1

 

Frequency Table of the Hypothetical 
Number of Joint Occurrences that Four 
“Causes” (

 

a

 

1

 

 … 

 

a

 

4

 

) Were Followed by 
Five “Effects” (

 

b

 

1

 

 … 

 

b

 

5

 

)

 

b

 

1

 

b

 

2

 

b

 

3

 

b

 

4

 

b

 

5

 

Sum

 

a

 

1

 

40 193 16 11 9 269

 

a

 

2

 

18 7 0 27 175 227

 

a

 

3

 

104 0 38 118 3 263

 

a

 

4

 

4 6 161 20 50 241
Sum 166 206 215 176 237 1000
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smoking, eating fats, etc. In an ecological context, the b’s might represent predation by predator 

 

j

 

,
while the a’s could represent donations of material or energy by host 

 

i

 

.
We notice from the table that whenever condition 

 

a

 

1

 

 prevails, there is a propensity for 

 

b

 

2

 

 to
occur. Whenever 

 

a

 

2

 

 prevails, 

 

b

 

5

 

 is the most likely outcome. The situation is a bit more ambiguous
when 

 

a

 

3

 

 prevails, but 

 

b

 

1

 

 and 

 

b

 

4

 

 are more likely to occur in that situation, etc. Events that occur
with smaller frequencies, e.g., [

 

a

 

1

 

,

 

b

 

3

 

] or [

 

a

 

1

 

,

 

b

 

4

 

] result from what Popper calls “interferences.”
We now ask how might the table of events appear, were it possible to isolate phenomena

completely — to banish the miasma of interferences? Probably, it would look something like
Table 5.2, where every time 

 

a

 

1

 

 occurs, it is followed by 

 

b

 

2

 

; every time 

 

a

 

2

 

 appears, it is followed
by 

 

b

 

5

 

, etc. That is, under isolation, propensities degenerate into mechanical-like forces. It is
interesting to note that 

 

b

 

4

 

 never appears under any of the isolated circumstances. Presumably, it
arose purely as a result of interferences among propensities. Thus, the propensity for 

 

b

 

4

 

 to occur
whenever 

 

a

 

3

 

 happens is an illustration of Popper’s assertion that propensities, unlike forces, never
occur in isolation, nor are they inherent in any object. They always arise out of a context that
invariably includes other propensities. That is, propensities are always imbedded in a configuration
of processes.

The interconnectedness of propensities highlights an unsung aspect of the role of contingency
in systems development — namely, that contingencies are not always simple by nature. Chance
events can possess distinctive characteristics and can be rare, or possibly even unique in occurrence.
Inculcated as we are in the atomic assumption that undergirds Newtonianism, we almost always
consider chance events as generic in nature, point-like in extent, and instantaneous in duration.
Thus, when Prigogine writes about macroscopic order being elicited by microscopic fluctuations,
it is implicit that the latter are generic and structure-less [8]. Chance perturbations, however, happen
to come in an infinite variety of forms, and any given system may be very vulnerable to some
categories of disturbance and relatively immune to others. 

Even if disturbances come in different flavors, we have been conditioned by Francis Bacon to
expect all phenomena to repeat themselves in due time. Repeatability is, after all, a cornerstone of
normal science. Once we open the door to complex contingencies, however, we must be prepared
to face the possibility that some contingencies might be 

 

unique

 

 for once and all time. In fact, we
should even gird ourselves to encounter a world that is absolutely rife with one-time events. The
key to this possibility is that contingencies be more generally regarded as configurations or con-
stellations of both things 

 

and processes

 

. That many, if not most, such configurations are probably
unique for all time follows from elementary combinatorics. For, if it is possible to identify 

 

n

 

 different
things or events in a system, then the number of possible combinations of events varies roughly
as 

 

n

 

 factorial. 
It does not take a very large 

 

n

 

 for 

 

n

 

! to become 

 

immense

 

. Elsasser called an immense number
any magnitude that was comparable to or exceeded the number of events that could have occurred

 

TABLE 5.2
Frequency Table As in Table 5.1, 
Except that Care Was Taken to Isolate 
Causes from Each Other

 

b

 

1

 

b

 

2

 

b

 

3

 

b

 

4

 

b

 

5

 

Sum

 

a

 

1

 

0 269 0 0 0 269

 

a

 

2

 

0 0 0 0 227 227

 

a

 

3

 

263 0 0 0 0 263

 

a

 

4

 

0 0 241 0 0 241
Sum 263 269 241 0 227 1000
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since the inception of the universe [9]. To estimate this magnitude, he multiplied the estimated
number of protons in the known universe (ca. 10

 

85

 

) by the number of nanoseconds in its duration
(ca. 10

 

25

 

) to yield a maximum of about 10

 

110

 

 conceivable events. It is often remarked how the
second law of thermodynamics is true only in a statistical sense; how, if one waited long enough,
a collection of molecules would spontaneously segregate themselves to one side of a partition.
Well, if the number of particles exceeds 80 or so, the 

 

physical

 

 reality is that they would 

 

never

 

 do
so (because 80! >> 10

 

110

 

). 
Because propensities always exist in a context, and because that context usually is not simple,

it becomes necessary to consider the reality and nature of complex contingencies. To capture the
effects of chance and history, it will no longer suffice simply to modulate the parameters of a
mechanical model with generic noise [10]. In a complex world, unique events are continually
occurring. They are by no means rare; they are legion! Perhaps fortunately, the overwhelming
majority of one-time events simply happen and pass from the scene without leaving any trace in
the more enduring observable universe. On occasion, however, a singular contingency can interact
with a durable system in such a way that the system readjusts in an 

 

irreversible

 

 way to the
disturbance. The system then carries the memory of that contingency as part of its 

 

history

 

. Again,
no amount of waiting is likely to lead to an uncontrived repetition of what has transpired.

The efficacy of Popper’s generalization is that the notion of propensity incorporates under a
single rubric law-like behavior, generic chance and unique contingencies. We note for reference
below that, irrespective of the natures of any eliciting interferences, the transition depicted from
Table 5.1 to Table 5.2 involves proceeding from less-constrained to more constrained circumstances.
It is the progressive appearance of constraints that we have in mind when we speak of the
“development” of an organic system. We now ask the questions, “What natural agency might
contribute to the transition from Table 5.1 to Table 5.2?”; or, in a larger sense, “What lies behind
the phenomena we call organic growth and development?,” and “How can one quantify the effects
of this agency?”

 

5.3 THE ORIGINS OF ORGANIC AGENCY

 

If Rosen deconstructed the notion that an organic system can exist exclusively as a collection of
mechanisms, he was at least responsible enough to hint at a direction in which one might seek to
construct a new theory of organic behavior. Rosen claimed that, in contradistinction to mechanical
systems, organic systems are self-entailing. That is, all of the processes necessary for the continued
existence of the organic structure are present 

 

within

 

 the system. Various forms of anabolism,
catabolism, reproduction, and maintenance all exist within an organic system and causally entail
one another. Although material and energy are required from the external world, such resources
resemble more objects than processes. In keeping with Popper’s emphasis on context and arrange-
ment of propensities, we choose to identify the configuration of constituent processes as the very
kernel of the organic system, from which most behaviors derive. In Popper’s own words: “Heraclitus
was right: We are not things, but flames. Or a little more prosaically, we are, like all cells, 

 

processes

 

of metabolism; 

 

nets

 

 of chemical pathways [11]” [Emphases mine].
The priority given to the configuration of processes over the structure of stable components in

organic systems is likely to sound either exotic or transcendental to many readers, but it is neither.
Its roots lie in the “process philosophy” of Alfred North Whitehead and Charles Saunders Peirce
Whitehead, for example, was inclined to identify any “creature [as being] derivative from the
creative process [12].” As for a nontranscendental exemplar, I offer the dynamics of autocatalysis,
or indirect mutualism.

To make clear exactly what I mean by “autocatalysis,” I take it to be a particular manifestation
of a positive feedback loop wherein each process has a positive effect upon its downstream neighbor
[13]. Without loss of generality, we will confine our discussion to a serial, circular conjunction of
three processes A, B, and C. Whenever these processes involve very simple, virtually immutable
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chemical forms or reactions, then the entire system functions in wholly mechanical fashion. Any
increase in A will invoke a corresponding increase in B, which in turn elicits an increase in C, and
whence back to A.

Matters become quite different, however, as soon as the configuration of processes grows
combinatorically complex. Such entities, by virtue of their rich continuum of variations, are capable
of small, contingent changes in structure, each variation of which will continue to function as an
autocatalytic loop as before, albeit with somewhat more or less effectiveness. In keeping with
Popper’s ideas, it would also be more appropriate to say that the action of process A under such
circumstances has a 

 

propensity

 

 to augment a second process B. That is, the response of B to A is
not prescribed deterministically. Rather, when process A increases in magnitude, most (but not all)
of the time, B also will increase. B tends to accelerate C in similar fashion, and C has the same
effect upon A.

Autocatalysis among propensities gives rise to several system attributes, which, as a whole,
distinguish the behavior of the system from one that can be decomposed into simple mechanisms
[14]. Most germane is that such autocatalysis now becomes capable of exerting 

 

selection

 

 pressure
upon its ever-changing, malleable constituents. To see this, we consider a small spontaneous change
in process B. If that change either makes B more sensitive to A or a more effective catalyst of C,
then the transition will receive enhanced stimulus from A. Conversely, if the change in B either
makes it less sensitive to the effects of A or a weaker catalyst of C, then that perturbation will
likely receive diminished support from A. We note three things about such selection: (1) that it acts
on the constituent processes or mechanisms as well as on the elements (objects) that comprise the
system, (2) that it arises 

 

within

 

 the system, not external to the system, and (3) that it can act in a
positive way to select 

 

for

 

 a particular system end (greater autocatalysis), rather than always 

 

against

 

the persistence of an individual material form. The first attribute defeats all attempts at reductionism,
while the latter two distinguish autocatalytic selection from the “natural selection” of evolutionary
theory. 

It should be noted in particular that any change in B is likely to involve a change in the amounts
of material and energy that are required to sustain process B. Whence, corollary to the selection
pressure is the tendency to reward and support those changes that serve to bring ever more resources
into B. As this circumstance pertains to any and all members of the feedback loop, any autocatalytic
cycle of propensities becomes the epicenter of a 

 

centripetal

 

 configuration, toward which as many
resources as available will converge. Even in the absence of any spatial integument (as required by
the related scenario called autopoeisis) [15], the autocatalytic loop itself defines the focus of flows.

Centripetality implies that whenever two or more autocatalytic loops exist in the same system
and draw from the same pool of finite resources, 

 

competition

 

 among the foci will ensue. In particular,
whenever two loops share pathway segments in common, the result of this competition is likely to
be the exclusion or radical diminution of one of the nonoverlapping sections. For example, should
a new element D happen to appear and to connect with A and C in parallel to their connections
with B, then if D is more sensitive to A and/or a better catalyst of C, the ensuing dynamics should
favor D over B to the extent that B will either fade into the background or disappear altogether.
That is, the selection pressure and centripetality generated by the autocatalytic configuration can
guide the replacement of elements. 

Of course, if B can be replaced by D, there remains no reason why C cannot be replaced by
E and A by F, so that the cycle A, B, C could eventually transform into D, E, F. This possibility
implies that the characteristic lifetime of the autocatalytic form generally exceeds those of most
of its constituents. The incipience of the autocatalytic form before, and especially its persistence
beyond, the lifetimes of most of its constituent objects imparts causal priority to the agency of the
configuration of processes. True, the inception of the feedback loop can be interpreted as the
consequence of conventional mechanistic causes. Once in existence and generating its own selection
pressures, however, those instigating mechanisms become accidental to the selection agency that
arises. Any argument seeking to explain the behavior of the whole system entirely as the result of
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shorter-lived constituent objects erroneously ignores the ascendant agency of the configuration of
processes, which winnows from among those ephemeral and transitory mechanisms.

We recall that with Democritus, the aim of rational explanation was to portray all processes as
the consequence of universal laws that act on eternal and unchanging fundamental atoms. At atomic
scales, this reductionist agenda has worked reasonably well, but, as soon as one encounters complex
configurations of processes, temporality becomes reversed. At the mesoscales, it is the configura-
tions of processes that are most enduring in comparison with which their constituents appear merely
as transients. Therefore, the most natural direction for causality to act at intermediate scales is from
the persistent configurations of processes toward their transient constituents, whose creation the
former mediates.

 

5.4 THE INTEGRITY OF ORGANIC SYSTEMS

 

Although autocatalytic systems appear to be potent and durable, their continued existence is not
without its own contingencies. As Popper noted, any configuration of processes can be considered
as a network, and the overall topology of networks leads one to some striking conclusions about
some inherent limitations possessed by organic systems. Earlier, Rashevsky had also described the
constituent processes of an organism in terms of a network wherein the various forms visible in
the system (nose, brain, kidney, etc.) [16] are connected to each other by processes. Whence, the
nose transmits olfactory signals to the brain via the electrical process of neural transmission. In
ecosystems one might link a lower species, such as an anchovy, to a higher trophic taxon, such as
a striped bass, via the process of predation. (Striped bass consume anchovies.)

Rashevsky’s student, none other than Robert Rosen, was able to prove a theorem about the
vulnerabilities of organisms (particular instances of our more general “organic system”) using
nothing more than the general topology of their networks [17]. He identified two classes of processes
in organisms — those that can generally be called metabolism and those that are restituent or effect
repairs. Rosen proved that it is impossible for every restituent process in an organism to be
reestablishable. That is, there is at least one restituent process in each organism, which, if rendered
inoperative, cannot be reconstituted. He went on to prove a second theorem that if the nonreestab-
lishable process happens to connect with external sources, then the destruction of that process will
cause the failure of the whole system. Organisms are mortal, it seems.

To prove his theorems, Rosen had to consider what he called a “closed circuit of restituents.”
He was able to show how, if one process in a closed circuit of restituents fails, all the others will
fail as well. Rosen’s reasoning applies as well to autocatalytic loops, so that one might view as a
corollary of his theorem the fact that autocatalytic systems are in general nondecomposable. For,
if one process of an autocatalytic cycle is obviated, there is no guarantee that its antecedent and
subsequent processes will link with one another in catalytic fashion, whence autocatalysis breaks
down, and all its constructive and integrative powers vanish with it. We see how Rosen’s conclusion
for one subclass of organic systems (organisms) bears implications for the more general category:
Organic systems are nondecomposable. They differ radically from purely mechanical systems,
which can be broken apart into disjoint objects and reassembled again without any discernible loss
of function. 

 

5.5 FORMALIZING ORGANIC DYNAMICS

 

As Rosen and Gödel demonstrated, formalizing any set of entailments always carries with it the
risk of incompleteness. Such danger did not deter Rosen himself from engaging in his own
formalizations — to good end. Furthermore, the scientific enterprise demands at least some degree
of quantification before a proposition can be legitimately entertained. Accordingly, we reconsider
the effects that autocatalysis works upon a system in the hopes of discerning some pattern among
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them. There appears to be two major facets to its actions: Autocatalysis serves to increase the
activities of all participating constituents; and it prunes the network of interactions so that those
links that most effectively contribute to autocatalysis come to dominate the system. These facets
of behavior are extensive (size-dependent) and intensive (size-independent), respectively. Schemat-
ically this transition is depicted in Figure 5.1. The upper figure represents a hypothetical, inchoate
four-component network before autocatalysis has developed, and the lower one, the same system
after autocatalysis has matured. The magnitudes of the flows are represented by the thickness of
the arrows. To the right appear the matrices that correspond to the pattern of flows. One recognizes
that the differences between the matrices in Figure 5.1 resemble those between Tables 5.1 and 5.2,
and we recall how that transition was associated with the appearance of progressive constraints. 

There is not sufficient space to detail how these two facets of autocatalysis came to be quantified
[18]. Suffice it here merely to convey the results. We begin by designating 

 

T

 

ij

 

 as the amount of
some conservative medium transferred from compartment 

 

i

 

 to some other compartment 

 

j

 

 within
the organic system. The sum of all such magnitudes for all the processes in the system becomes
what is known in economic theory as the “total system throughput” — a measure of a system’s
total extent, or activity. In symbols, 

where 

 

T

 

 is the total system throughput. Growth thereby becomes an increase in the total system
throughput, much as economic growth is reckoned by any increase in Gross Domestic Product. 

As for the “pruning,” or development effected by autocatalysis, it will be related to changes in
the probabilities of flow to different compartments. We note, therefore, that the joint probability

 

FIGURE 5.1

 

Schematic representation of the major effects that autocatalysis exerts upon a system. (a) original
system configuration with numerous equiponderant interactions. (b) same system after autocatalysis has pruned
some interactions, strengthened others, and increased the overall level of system activity (indicated by the
thickening of the arrows). Corresponding matrices of topological connections indicated to the right. 
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that a quantum of medium both leaves i and enters j can be estimated by the quotient Tij /T, and
that the conditional probability that, having left i, it then enters j can be approximated by the
quotient 

One can then use these probability estimates to calculate how much information is provided by the
increased constraints. The appropriate measure in information theory is called the “average mutual
information” or AMI,

The AMI has recently been shown to be the logarithm of the number of distinct roles in the
system that is sculpted by its various constraints [19]. To demonstrate how an increase in AMI
actually tracks the “pruning” process, I refer the reader to the three hypothetical configurations in
Figure 5.2. In configuration (a) where medium from any one compartment will next flow is
maximally indeterminate. AMI is identically zero. The possibilities in network (b) are somewhat
more constrained. Flow exiting any compartment can proceed to only two other compartments,
and the AMI rises accordingly. Finally, flow in schema (c) is maximally constrained, and the AMI
assumes its maximal value for a network of dimension 4. 

FIGURE 5.2 (a) The most equivocal distribution of 96 units of transfer among four system components. (b)
A more constrained distribution of the same total flow. (c) The maximally constrained pattern of 96 units of
transfer involving all four components.
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Because autocatalysis is a unitary process, we can incorporate both factors of growth and
development into a single index by multiplying them together to define a measure called the system
ascendency, A = T × AMI. In his seminal paper, “The Strategy of Ecosystem Development,” Eugene
Odum identified 24 attributes that characterize more mature ecosystems [20]. These can be grouped
into categories labeled species richness, dietary specificity, recycling, and containment. All other
things being equal, a rise in any of these four attributes also serves to augment the ascendency. It
follows as a phenomenological principle of organic behavior that “in the absence of major pertur-
bations, organic systems have a propensity to increase in ascendency.” Increasing ascendency is a
quantitative way of expressing the tendency for those system elements that are in catalytic com-
munication to reinforce and mutually entail each other to the exclusion of nonparticipating members.

I should hasten to emphasize in the strongest terms possible that increasing ascendency is only
half of the dynamical story. Ascendency accounts for how efficiently and coherently the system
processes medium. Using the same mathematics, one can compute as well an index called the
system overhead, Φ, that is complementary to the ascendency [21]. 

Overhead quantifies the inefficiencies and incoherencies present in the system. Although these
latter properties may encumber overall system performance at processing medium, they become
absolutely essential to system survival whenever the system incurs a novel perturbation. At such
time, the overhead comes to represent the degrees of freedom available to the system and the
repertoire of potential tactics from which the system can draw to adapt to the new circumstances.
Without sufficient overhead, a system is unable to create an effective response to the exigencies of
its environment. The configurations we observe in nature, therefore, appear to be the results of a
dynamical tension between two antagonistic tendencies (ascendency vs. overhead). 

5.6 UNDER OCCAM’S RAZOR

As mentioned above, some readers will regard the description of the development of organic systems
to be unnecessarily complicated in comparison to the very simplistic scheme that emerged from
the Grand Synthesis and usually is referred to as the neo-Darwinian scenario of evolution. Neo-
Darwinians will immediately grasp for Occam’s Razor to excise the offending notion of organic
behavior. But I wish to rejoinder with the question, “Which description is really simpler? [22]”
Howard Pattee (personal communication) emphasizes how any description of change in nature must
consist of two elements — the dynamic by which those elements interact and the boundary
conditions or context within which the dynamic transpires.

Charles Darwin consciously followed the prevailing Newtonian approach toward describing
nature by explicitly externalizing all the agencies that elicit change under his rubric, “natural
selection [23].” The remaining dynamics are rather easy to codify and describe. Natural selection,
however, remains an enormously complicated “boundary condition” that at times is described in
almost transcendental tones. We implicitly are urged to keep our eyes focused intently on the simple
dynamical description and to pay no attention whatsoever to the overwhelming complexity within
which that dynamic occurs. Subsequent emendations to Darwin’s scheme have not altered his basic
Newtonian separation and focus.

According to Pattee, however, any natural description should be judged in its entirety. By this
standard, neo-Darwinism, due to the encumbrance of the complexity hidden in natural selection,
does not fare well under Occam’s razor. By contrast, self-organization theory (of which this organic
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narrative is an example) includes far more agency into its dynamics. A slightly more complicated
description of the operative dynamics ensues, but the cost of such complication is more than repaid
by the degree to which it simplifies the boundary value problem. That is, a significant amount of
biological order, which under the Darwinian scheme had to be explained by arbitrary and innu-
merable manifestations of “natural selection,” is now consolidated as the consequences of dynamics
that are internal to system description. Kauffman called this class of phenomena “order for free,”
in the sense that the given pattern did not have to be encoded into the genome of the organism [24].

As regards overall problem description, the jury is still out as to whether neo-Darwinism or
self-organization theory better satisfies Occam’s criterion, but proponents of the latter description
have every reason to be optimistic that the scales are beginning to tip in their favor.

Apropos simplicity of description, one may well ask, which metaphor more simply and appro-
priately pertains to biological phenomena — the mechanical or the organic? The answer should
be tautologically obvious, but the minimalist/mechanists would have us think otherwise. Daniel
Dennett, for example, bids us imagine the progressive complexity of biological entities as analogous
to “cranes built upon cranes,” whereby new features are hoisted on to the top of a tower of cranes
to become the top crane that lifts the next stage into place [25]. He specifically warns against
invoking what he calls “skyhooks,” by which he means agencies that create order but have no
connection to the firmament. 

Once one is convinced that the organic metaphor does have a legitimate place in scientific
narrative intermediate to the mechanical and the stochastic, then organic analogs for biological
phenomena become the simplest and most natural possible. This point was brought home to me
via one of the few “Eureka!” experiences I have ever encountered. I was working distractedly in
my garden, pondering why I thought Dennett’s analogy was inappropriate, when my eye was drawn
to a muscadine grapevine that has grown on the corner of my garden fence for the last 25 or so
years. In the initial years after I had planted it, the lead vine had become a central trunk that fed
an arboreal complex of grape-bearing vines. Eventually, the lateral vines had let down adventitious
roots that met the ground some distance from the trunk. Then in the last few years, the main trunk
had died and rotted away completely, so that the arboreal pattern of vines was now being sustained
by the new roots, which themselves had grown to considerable thickness.

No need for skyhooks here! The entity always remains in contact with the firmament, and bottom-
up causalities continue to be a necessary part of the narrative. Yet it is the processes within the
later structures that create connections, which eventually replace and displace their earlier coun-
terparts. Top-down causality, the crux of organic behavior, but totally alien to mechanistic-reduc-
tionistic discourse, fits the developmental situation perfectly. Evolution is like a muscadine grape-
vine. As strange as that analogy might seem at first, it fits the description far better than Dennett’s
mechanical construct. In striving for causal simplicity by concocting mechanical metaphors for
what is more inherently and legitimately organic phenomena, mechanists wind up complicating
the picture unnecessarily and lead us astray from a more natural perspective on the living world.

5.7 THE ORGANIC PERSPECTIVE

To summarize, the realm of ecology appears to require a metaphysics that differs in essence from
the conventions of the Enlightenment [26]. This ecological metaphysics can more readily accom-
modate a looser statement of the organic metaphor. To wit: 

1. The causal entailments in organic systems are more replete than those of simple mechan-
ical systems. In the organic context, Newtonian causal closure does not impart the virtue
of simplicity, but rather is seen as a procrustean minimalism. Newtonian closure cannot
be as easily reconciled with stochastic events without resorting to a schizoid view of
nature. Causal agency is more naturally apprehended as a continuum of propensities,
rather than an admixture of the extremes of mechanical determinism and pure chance.
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2. An organic system is the culmination of a history of chance events that have been
embedded into their functioning. While some of the entrained events may have been of
a generic nature, others most assuredly were complex, unique, and nonrepeatable.

3. Organic systems, although they decay after they have ceased to function organically, are
strongly nondecomposable while they are functioning (living). 

4. The key feature of organic systems appears to be the top-down influence that combina-
tions of processes exert upon their constituent elements (objects) and mechanisms (con-
stituent processes.) The strength of such top-down influence can vary among the types
of organic systems, approximating the deterministic in ontogenesis, but allowing for
considerable plasticity in ecosystems.

As regards organicism, heretofore the major problem has been that organic behavior was miscast
as almost deterministic or mechanical. Even early ecologists, like Frederic Clements could conceive
of organic agency only in this fashion. They can hardly be faulted for such assumption, however,
when the most obvious manifestations of organic behavior, organisms themselves, lie against one
extreme of the range of organic behavior and do develop in close approximation to rigid determin-
ism. But the crux of organic behavior is neither mechanism nor determinism. These are only
peripheral limits toward which organic behavior, if left unimpeded, could drift. The kernel of organic
systems lies rather in the coherence and direction that system-level configurations of processes
impart to their components. This “ecological” form of organicism seems far less threatening a
notion than its earlier counterpart. To convince oneself of this, one need to only consider the
absurdity of a dictator trying to describe his/her totalitarian state in terms of an ecosystem with its
loose connections and manifold feedbacks. 

As regards any similarity of ecological organicism with vitalism, we note as how the former
concept does not involve any independent “elan-vital” that enters the system from without. The
contributing processes are all internal to the system itself. Furthermore, like the muscadine grape,
autocatalytic configurations of processes are all inexorably connected with their material resources. 

Finally, to return to the radical shift in attitudes toward life and death that opened this essay,
it should now be apparent that the notion of creativity in organic systems can afford an appealing
resolution. We need simply to place more emphasis upon the creative role of configurations of
processes, and the conundrum evaporates. Physicists, for example, relate how the conjunction of
processes that gave rise to the elementary forms of matter bear marked formal similarity to those
that have just been described. No longer must dead matter and living forms be juxtaposed in our
minds across an unbridgeable chasm, but rather now both should be viewed as outgrowths of a
common form of creative agency.
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6.1 THEORIES OF CHAOTIC BEHAVIOR 

 

The metaphor of “chaos” is more convoluted than other metaphors (e.g., hierarchy), because the
emotional meaning of the word “chaos” greatly differs from its formal meaning in contemporary
science. 

It is often mistakenly thought that the word “chaos” comes from 

 

The Bible

 

, but

 

 

 

in its original
Hebrew version, the word “chaos” does not appear. The word 

 

chaos 

 

has its roots in Greek reflexive
verb 

 

chaino

 

, meaning “to open,” and when used as a noun, meaning “something open,” especially
an abyss. In Greek mythology, descriptions of the “birth of the world” usually start with the
statement like “In the beginning there was Chaos.” In ancient Egypt, the most powerful god was
Nun (Nu) — the God of Chaos, “father” of all other gods.

Superficially, 

 

chaotic

 

 

 

systems 

 

behave in completely random fashion. Yet, close analysis shows
that they show a subtle structure, an underlying order. Chaos is seemingly unpredictable, indecom-
posable, and yet is fully determined, given a specific set of untold conditions. (Note: The seeming
unpredictability is not an artifact of the structure of chaos. It is an indication of our ignorance of
initial conditions.) Chaos may be observed only in 

 

nonlinear

 

 

 

systems

 

, i.e. in which the influence
of a change of any state variable depends on the actual state of the system and/or the reaction to
any external stimulus is not directly proportional to the strength of this stimulus. We will come
back later to the differences between chaoticity and stochasticity.

Linear systems have 

 

states

 

 

 

of equilibria 

 

— a system that reached equilibrium is “dead”; “Old
chemists never die, they just reach equilibrium” says a dictum. Nonlinear systems have so-called
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attractors

 

 

 

— attractor is a subset of system’s states to which the system “is attracted” when time
runs; a system that reached a state that belongs to its attractor remains “alive” — different processes
in the system are not stopped, but state of the system remains confined to the states belonging to
this system’s attractor. The very essence of chaotic system is the presence of a 

 

chaotic

 

 

 

attractor

 

.
It used to be called 

 

strange attractor

 

, but it was shown that while all chaotic attractors are strange,
not all strange attractors are chaotic [1]. It is the presence of chaotic attractors that makes nonlinear
dynamic of chaotic systems extremely sensitive to initial conditions. 

The wide range of fields has been touched by the metaphor of “chaos,” between them is the
System Biology. Biology is the discipline distinguished among all sciences by the interplay of
seems to equate 

 

randomness

 

 with chaos. Chaos is not random, it is fully determined. This plays
an essential role in the creation of forms, and 

 

complexity

 

,

 

 which is the presence of irreversible,
dissipative fractal structures, playing a determining role in generating and shaping life forms.

 

6.1.1  C

 

HAOS

 

 

 

AND

 

 G

 

ENERAL

 

 S

 

YSTEMS

 

 T

 

HEORY

 

 

 

The aim of General Systems Theory is to study all complex systems, independent of type of
components, focusing instead on concepts such as boundaries, input–output, state space, feedback,
control, information, hierarchies, and networks [2,3]. The organization of a system is the set of
relations that define it as a unity; the structure of a system is the set of relations among its components.
Step by step, people have universally recognized that a system is more than just the sum of its
components, and has its own hierarchy and functional structure. Although superficially different,
many kinds of biological systems display patterns of connectivity that are essentially similar. In most
models of biological systems (for example, dynamical systems, cellular automata, and state spaces),
the patterns of connectivity between elements are isomorphic to directed graphs. These isomorphisms
suggest that the above sources of emergent behavior may be universal. In no area of science
Aristotelian saying “The whole is greater than the sum of its parts” is more evident than in biology.

Ashby [4] formulated the law of requisite variety for adaptive systems, the principle that every
dynamic system will self-organize, and the requirement that every regulator of a system must also
be a model of that system. Aulin [5] proposed a similar law of requisite hierarchy governing both
control systems and societies. Simon [6] has studied the problem-solving techniques that adaptive
systems (people, organizations, computers, etc.) use to cope with complexity and proposed an
evolutionary explanation for hierarchical organization [7].

The principles of variation and selection were first formulated by Charles Darwin [8] to explain
the origin of biological species. Modern overviews of evolutionary theory in biology can be found
in Dawkins [9]. Gould and Eldredge [10] have proposed the theory of 

 

punctuated equilibrium

 

,
according to which evolution is a largely chaotic, unpredictable process, characterized by long
periods of stasis, interspersed by sudden bursts of change. Kauffman [11,12] has tried to understand
how networks of mutually activating or inhibiting genes can give rise to the differentiation of organs
and tissues during embryological development. This led him to investigate the properties of Boolean
networks of different sizes and degrees of connectedness — he proposed that the self-organization
exhibited by such networks of genes or chemical reactions is an essential factor in evolution,
complementary to Darwinian selection by the environment. Kauffman’s mathematical model is
based on the concept of “fitness landscapes” (originally introduced by Sewall Wright). A fitness
landscape is a distribution of fitness values over the space of genotypes. Evolution is the traversing
of a fitness landscape; peaks represent optimal fitness.

Langton [13], inspired by works of Dawkin and Kauffman, initiated a new approach called

 

artificial life

 

 that tries to develop technological systems (computer programs and autonomous
robots) exhibiting life-like properties, such as reproduction, sexuality, swarming, and coevolution.
Langton [14] has also proposed the general thesis that complex systems emerge and maintain on
the 

 

edge of chaos

 

, the narrow domain between frozen constancy and chaotic turbulence. The state
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between order and chaos (the “edge of chaos”) is sometimes a very “informative” state, because
the parts are not as rigidly assembled as in the case of order and, at the same time, they are not as
loose as in the case of chaos. The system is stable enough to keep information and unstable enough
to dissipate it. The system at the edge of chaos is both a storage and a broadcaster of information.
At the edge of chaos, information can propagate over long distances without decaying appreciably,
thereby allowing for long-range correlation in behavior: ordered configurations do not allow for
information to propagate at all, and disordered configurations cause information to quickly decay
into random noise. Living organisms dwell “on the edge of chaos,” as they exhibit order and chaos
at the same time, and they must exhibit both in order to survive. 

Prigogine’s “Brussels School” has demonstrated that physical and chemical systems far from
thermodynamical equilibrium tend to 

 

self-organize 

 

and thus to form 

 

dissipative

 

 

 

structures 

 

[15–17].
Irreversible processes and nonequilibrium states turn out to be fundamental features of the real
world. Prigogine distinguishes between “conservative” systems (which are governed by the three
conservation laws — for energy, translational momentum, and angular momentum — and which
give rise to reversible processes) and “dissipative” systems (subject to fluxes of energy and/or
matter). The latter give rise to irreversible processes — most of nature is made of such “dissipative”
systems. Dissipative systems conserve their identity, thanks to the interaction with the external
world, nonequilibrium becomes a source of order. Self-organization is the spontaneous emergence
of ordered structure and behavior in open systems that are in a state far from equilibrium, described
mathematically by nonlinear equations.

Haken [18–20] has suggested the label of 

 

Synergetics 

 

for the field that studies collective patterns
emerging from many interacting components. Synergetics applies to systems driven far from
equilibrium, where the classic concepts of thermodynamics are no longer adequate. It expresses
the fact that order can arise from chaos and can be maintained by flows of energy/matter. Systems
at instability points (at the “threshold”) are driven by a “slaving principle”: Long-lasting quantities
(the macroscopic pattern) can enslave short-lasting quantities (the chaotic particles), and they can
force order on them (thereby becoming “order parameters”). The system exhibits a stable “mode,”
which is the chaotic motion of its particles, and an unstable “mode,” which is its macroscopic
structure and behavior of the whole system. Close to instability, stable modes are “enslaved” by
unstable modes and can be ignored. Instead of having to deal with millions of chaotic particles,
one can focus on the macroscopic quantities. 

 

De facto

 

, the degrees of freedom of the system are
reduced. Haken shows how one can write the dynamic equations for the system, and how such
mathematical equations reflect the interplay between stochastic forces (“chance”) and deterministic
forces (“necessity”).

Eigen has introduced the concepts of natural self-organization through 

 

hypercycle

 

, an auto-
catalytic cycle (a cycle of cycles of cycles) of chemical reactions [21]. Then he proved that life
can be viewed as the product of a hierarchy of such hypercycles. Hypercycles are capable of
evolution through more and more complex stages. Hypercycles compete for natural resources and
are therefore subject to natural selection.

Bak has shown that many complex systems will spontaneously evolve to the critical edge between
order and chaos; this phenomenon, called 

 

self-organized criticality

 

, may provide an explanation
for the punctuated equilibrium dynamics seen in biological evolution [22].

The modeling of nonlinear systems in physics has led to the concept of chaos as a deterministic
process characterized by extreme sensitivity to its initial conditions [23]. 

 

Cellular automata 

 

(created
by von Neumann [24] in his investigation of complexity of self-reproducing automata), mathemat-
ical models of distributed dynamical processes characterized by a discrete space and time, have
been widely used to study phenomena such as chaos, attractors, and the analogy between dynamics
and computation through computer simulation [25], while 

 

catastrophe theory

 

 proposed a mathe-
matical classification of the critical behavior of continuous mappings [26], extending the much
older works by the biologist D’Arcy Thompson [27]. 
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Holland [28] founded 

 

genetic algorithms 

 

— parallel, computational representations of the
processes of variation, recombination, and selection on the basis of fitness that underlies most
processes of evolution and adaptation. 

Foerster formulated the order from noise principle [29] and formulated the “second-order”
cybernetics or the cybernetics of observing systems, according to which models of systems change
the very systems they intend to model [30]. His emphasis on circular, self-referential processes has
been elaborated in works on autopoietic systems — autopoiesis (self-production) denotes the fact that
organisms produce their own components, while the environment is a source of perturbations that
need to be compensated in order to maintain the system’s organization [31]. 

 

Cybernetic systems

 

are merely a special case of self-organizing systems.
Between common characteristics of complex systems, there are causal networks that contain

cycles, in particular, self-reinforcing cycles. Forrester’s [32] approach to systems dynamics is based
on the analysis of positive and negative feedback cycles in networks of many interacting variables;
this approach was at the base of the famous world model presented in a report to the Club of Rome.
It is worth noting that the Club of Rome’s model did not predict what actually happened in the
environment. Boulding [33] proposed a related, flow-based model of the evolution of society,
integrating ecology and economics. This transition from biological evolution to social exchanges
naturally leads to the modeling of economic and social processes, to new interdisciplinary fields
of 

 

Econophysics 

 

and 

 

Sociodynamics 

 

[34–36]. 
Mandelbrot, who was born in Poland in 1924 into a family with an extremely academic tradition,

has founded the field of 

 

fractal

 

 

 

geometry

 

 

 

[37], which models the recurrence of 

 

self-similar structures

 

(

 

patterns in space

 

)

 

 at different scales, exhibiting power laws. Fractals are geometric objects char-
acterized by some form of self-similarity; that is, parts of a fractal, when magnified to an appropriate
scale, appear similar to the whole. Coastlines are approximate fractals. Fractals are closely related
to chaos — 

 

the geometry of strange attractors is fractal geometry

 

. So, the nonlinear dynamics of
chaotic systems can show itself as 

 

fractality in time

 

 

 

domain 

 

— 

 

oscillations, with similar smaller
timescale

 

 

 

oscillation imposed on those, with still smaller similar timescale

 

 

 

oscillation imposed on
these, etc. 

 

Paar et al. [38] demonstrated that a simple mechanism of coupled oscillators with weak
dissipation can lead to a complex coexistence of various modes involving 

 

truncated fractals

 

, i.e.,
their self-similarity extends at most over a few orders of magnitude — biological fractals, unlike
mathematical ones, are necessarily truncated. Such fractality may play a role in generating some
basic features of biological systems. 

 

Complex adaptive

 

 

 

systems 

 

are ubiquitous in nature. They include brains, ecosystems, and even
economies. They share a number of features: each of these systems is a network of agents acting
in parallel and interacting; behavior of the system arises from cooperation and competition among
its agents; each of such systems has many levels of organization, with agents at each level serving
as building blocks for agents at a higher level. 

 

6.1.2 D

 

ETERMINISTIC

 

 C

 

HAOS

 

 

 

In our everyday language “chaotic” means “complete absence of order or shape; confusion” [39].
It has been said “Chaos is a name for any order that produces confusion in our minds” (attributed
to George Santayana, the author of 

 

Realms of Being

 

). We are really confused while learning about

 

deterministic chaos 

 

(it does sound like an oxymoron, doesn’t it?) — the complex systems and
processes that are governed by the deterministic laws in a form of the first-order ordinary differential
equations (ODEs); however, when one observes these systems, they look completely disordered,
like they were 

 

stochastic

 

,

 

 

 

i.e., governed by the laws of probability. 
A system that evolves in time governed by the laws that may be expressed by ODE has been

called 

 

deterministic

 

, because knowing the equations and the initial conditions one is supposed to
be able to calculate all system’s characteristic in any other, future moment, and even at any moment
in the past. General analytical methods (algorithms) of solving exist only for so-called linear ODEs,
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i.e., equations that contain neither a second nor any higher power, nor a product of any variables
or differentials. Solutions of linear ODEs are typically given in a form of combinations of expo-
nential and trigonometric functions. 

Only a limited set of ODEs may be solved analytically. Most ODEs may be solved only
approximately, using numerical methods and contemporary computers. However, since in a com-
puter only integers may be exactly represented while real numbers are always represented with
only finite accuracy, the result of solving an ODE may be wrongly treated as being a good
representation of the real process. In reality, the obtained numerical solution may have nothing in
common with the real system one wants to model. But even more important, since in practice the
initial conditions may be reproduced only with limited accuracy, the behavior of the real system,
despite starting with “the same initial conditions” may, in reality, be completely different each time
a process is repeated. That is, the behavior of the system itself, and not just of its numerical,
computer model, may be intrinsically chaotic.

ODEs containing only the first powers of the derivatives, but still some nonlinear algebraic
terms such as squares, cross-products, or higher powers of the dependent variables and/or the
independent variable are called quasilinear ODEs (QLODEs); since computers came into use, it is
possible to solve QLODEs using numerical methods. QLODEs are but a special case of 

 

differential
systems

 

, and if time is taken as the independent variable one speaks about 

 

dynamical systems

 

.
QLODEs are extremely important in science and engineering. For example, the whole chemical
kinetics is based on QLODEs. It has not, however, been really understood until the 1970s that even
quite simple QLODEs may have extremely complicated solutions, including chaotic solutions.
Anybody using computers for modeling dynamical systems should be fully aware of possible
pitfalls.

To illustrate “strange” behavior of chaotic systems, let us consider the QLODEs proposed to
model some meteorological phenomena [40]. However, the same equations may be used for
modeling completely different systems, for example, lasers (of course, with very different physical
interpretation of variables and parameters involved) [41]. Here we are not interested in physical
interpretation, but only in the behavior of solutions obtained by numerical integration of Lorenz
equations: 

d

 

x

 

/d

 

t 

 

= –

 

ax

 

 + 

 

ay

 

(6.1a)

d

 

y

 

/d

 

t 

 

= 

 

bx 

 

– 

 

y 

 

– 

 

xz

 

(6.1b)

d

 

z

 

/d

 

t 

 

= –

 

cz 

 

+ 

 

xy

 

(6.1c)

We have chosen two sets of parameters:

 

a

 

 = 10; 

 

b

 

 = 28; 

 

c

 

 = (8/3) (6.2a)

 

a

 

 =10; 

 

b

 

 = 28; 

 

c

 

 = (8008/3000) (6.2b)

For each set of parameters (Equation 6.2), three different sets of initial conditions have been
used:

 

x

 

(0) = 0.999; 

 

y

 

(0) = 0.999; 

 

z

 

(0) = 0.999 (6.3a)

 

x

 

(0) = 1.000; 

 

y

 

(0) = 1.000; 

 

z

 

(0) = 1.000 (6.3b)

 

x

 

(0) = 1.001; 

 

y

 

(0) = 1.001; 

 

z

 

(0) = 1.001 (6.3c)
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The first result, surprising for an “uninitiated” person, is that the system shows very irregular
behavior. In Figure 6.1, solution of Equation 6.1 (a–c) with parameters (Equation 6.2b) and initial
conditions (Equation 6.3c) is shown. While inspecting Equation 6.1 (a–c), no one could directly
predict such a strange behavior of the solution — because of the simplicity of the equations, one
would rather expect smooth, regular behavior. 

Figure 6.2 shows one “face” of behavior of chaotic system — its 

 

extreme sensitivity to small
changes in system parameters

 

. When parameters are changed from Equation 2a to Equation 2b,
that is one of the parameters, 

 

c

 

, is increased one tenth of a percent, while the initial conditions
remain unchanged, at the beginning the solutions remain practically unchanged. Then, suddenly, a
big difference appears. All three dependent variables show similar chaotic behavior. 

Another “face” of the behavior of chaotic system — its 

 

extreme sensitivity to initial conditions 

 

—
is shown in Figure 6.3. When the system parameters (Equation 6.2) remain unchanged, but initial
conditions are changed from Equation 3a to Equation 3b, i.e., one tenth of a percent, again at the
beginning nothing seems to change, but then suddenly big differences appear. 

So, small changes of initial conditions and/or of system parameters bring dramatic changes in
a long-time behavior of the solution of Equation 6.1. The obtained results are not some artifacts
introduced by numerical integration, but are really the inherent properties of the considered system. 

 

Deterministic chaos 

 

sounds like an oxymoron, something like “Ugly Beauty” — a nice piece
of music, composed by Theolonius Monk or “Progressive Conservative” — one of the main political
parties in Canada. Deterministic chaos has been observed in different physical and chemical
systems. It is impossible to predict chaotic behavior by a simple inspection of QLODEs that model
a given system, since chaotic behavior may take place only for some values of the system param-
eters; for other values the behavior may be quite regular. 

Anybody using such models (in chemistry, biology, engineering, economics, business, and
humanities) should be aware of possible pitfalls hidden in even simple QLODEs. Using computers
to store and retrieve information does not require any knowledge of mathematics, nor understanding

 

FIGURE 6.1

 

Example of a solution of system (Equation 6.1) [for parameters (Equation 2b) and initial con-
ditions (Equation 3c)]; 

 

x
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FIGURE 6.2

 

Example of deterministic chaos — sensitivity of solution of system (Equation 6.1) to system
parameters —

 

 x 

 

vs

 

.

 

 

 

t

 

 for parameters (Equation 2a) and (Equation 2b), respectively; a. for initial conditions
(Equation 3a); b. for initial conditions (Equation 3b);

 

 y

 

 and z show similar chaotic behavior.
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FIGURE 6.3 Example of deterministic chaos — sensitivity of solution of system (Equation 6.1) to initial
conditions — x vs. t for initial conditions (Equation 6.3a), (Equation 6.3b), and (Equation 6.3c), respectively.
a. For parameters (Equation 6.2a); b. for parameters (Equation 6.2b); y and z show similar chaotic behavior.
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of how computer works, like watching TV does not require knowledge of Maxwell equations of
electromagnetism. However, a person who applies a computer for problem solving in which numerical
information is processed and transformed does need to have a really good mathematical background
and enough knowledge about the considered system or process, so to be able to choose a proper
mathematical method and not to misinterpret the results. Unacquaintance with ODEs is an example
of innumeracy — an inability to understand numbers — the mathematical equivalent of illiteracy. 

6.2 NONLINEAR DYNAMICS — CHAOS AT WORK 

The “strange” properties of Lorenz equations (Equation 6.1) arise due to the nonlinear cross-
terms — xz and xy — without these terms, it is a simple linear dynamical system that does not
show extreme sensitivity to parameters or to initial conditions. In linear systems, the principle of
superposition applies. One consequence of that principle is seen in the Newtonian dynamics
example. In Newtonian dynamics, if the x component of the force applied to a body is a times
greater, y component b times greater, z component c times greater, the components of acceleration
of the body will also be correspondingly a, b, c times greater, because the mass of the body is
assumed to be constant, and the components of acceleration are independent one from another. 

Traditional reductionistic view trying to explain properties of a system by properties of its
components may be fundamentally flawed because of emergent properties of complex chaotic
systems. On a so-called mesoscopic scale (smaller than accessible to direct observation but big
enough that the number of particles involved in the organized pieces of matter is sufficiently large
to be beyond explicit calculation from the constituent parts), biological “miracles” — phenomena
that can be categorized and described but not completely explained in terms of detailed microscopic
mechanisms — happen. 

Examples are biomolecules such as enzymes and intracellular structures, which are responsible
for dramatically complex biological processes that are reproducible and can be modified but not
derived from the properties of their constituents. There exist several families of so-called confor-
mons — molecular structures that also carry information — driving distinct biological functions
at the molecular level [42–44], for example timing processes within proteins (Klonowski–Klonowska
conformon) [42, 44].

Another example are spatiotemporally organized networks of physicochemical processes that
may be identified with intracellular dissipative structures [42], defined generally as the dynamics
organization of matter in space and time kept far from equilibrium by a continuous dissipation of
free energy. Nonequilibrium structures such as subcellular sol–gel dissipative network structures
[45, 46] may be built up even of subunits that taken separately are in thermodynamic equilibrium.

Also brain activity may be explained as chaos on mesoscopic scale [47]. What distinguishes
brain chaos from other kinds is the filamentous texture of neural tissue called neuropil, which is
unlike any other substance in the known universe [48]. Neural populations stem ontogenetically in
embryos from aggregates of neurons that grow axons and dendrites and form synaptic connections
of steadily increasing density. At some threshold, the density allows neurons to transmit more pulses
than they receive, so that an aggregate undergoes a state transition from a zero-point attractor to a
nonzero point attractor, thereby becoming a population. Such a property has been described
mathematically in random graphs, where the connectivity density is an order parameter that can
instantiate state transitions [49]. Accordingly, state transitions in neuronal populations can be
interpreted as a kind of sol–gel transition progressing in the neuropil medium.

6.2.1 ENERGETIC AND INFORMATIONAL INTERACTIONS 

One may use a mechanical analogy to better understand the issue. A pack of cards lying on a
tabletop is in equilibrium. Its potential energy shows a deep minimum, and a substantial force like
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a gust of wind is necessary to scatter the cards. The same pack, if arranged into a house of cards
with the potential energy much higher, becomes extremely sensitive to very small forces, whether
acting on the whole system or even on a single card. Building such a nonequilibrium structure
requires application of forces as well as an energy input much higher than those needed to just
scatter a pack of cards. But the response time of the system becomes extremely short, and system
sensitivity becomes extremely high. 

It is obvious that changing the state of a system in equilibrium requires a significant force, an
energetic interaction, whereas the state of a system far from equilibrium may be changed by a very
small force, an informational interaction. 

Extreme sensitivity to physiological parameters enables very quick regulatory response. 
The system of macromolecular network structures that occupy and organize the interiors of all

living cells, the so-called cytoskeleton structures, which are of nanometer size scale and undergo
conformational oscillations in the nanosecond timescale, are the basis of what Hameroff calls
ultimate computing; in the motto to his book he says “Billionth scale activities in biomolecular
assemblies could define life itself, and provide a frontier for the evolution of technology” [50]. 

The cytoskeleton, within neurons and all living cells, is a parallel-connected network, which
can utilize coherent cooperativity of its own collective phenomena to organize and process subcel-
lular information. Dynamic structural activities of the cytoskeleton are responsible for all cytoplas-
mic rearrangements including formation and regulation of dendritic spines and synapses in the
nervous system, which, in turn, are probably the very basis of learning and memory. 

The key word here, which leads to both neural and computing mechanisms, is the word
“collective.” Collective mechanisms can exert long-range cooperativity and organization within
parallel arrays. Collective phase transitions in brain parallel arrays could be “a fabric of conscious-
ness,” where an “idea” emerges like the property of superconductivity from a large number of
simple, “aligned” subunits. In computer simulations of parallel networks, Choi and Huberman [51]
observed collective effects manifested as diffuse reverberation, sustained oscillation, phase transi-
tion, and deterministic chaos. All collective phenomena but equilibrium phase transitions (for
example, freezing of water in 0oC, 32oF) take place in systems far from equilibrium. 

Thus, as suggested by Conrad, each protein is a rudimentary computer and converts a complex
analog input to an output state of its own conformation. The evolution of form and information
“from chaos” has been termed morphogenesis. It is now apparent that biological cells are complex
entities whose action depends on collective functions of intracellular structures, first of all the
cytoskeleton. 

With equilibrium, there is no change, no self-organization, no self renewing, and no learning.
That is why living systems should foster some complexity and some nonequilibrium. We may say
that complex systems, from atomic level to social level, show a kind of physical fractal structure,
despite the fact that similarity of different levels have rather quantitative character instead of a
qualitative one, as it is in the case of mathematical fractals. Any complex system has to exchange
energy and information with the environment to keep its structure and function. Living systems
show autopoiesis — they continuously renew and regulate themselves to maintain the integrity of
their structure.

6.2.2 OPEN AND CLOSED SYSTEMS — FROM A SINGLE MOLECULE TO METAMAN 

It is interesting that the word chaos has its roots in Greek “chaino,” meaning “to open” or “something
open,” because nonlinear phenomena, such as deterministic chaos may be observed only in open
systems (i.e., systems that exchange with their environments both energy and mass), while classic
thermodynamics considers closed systems consisting of many elements.

The three basic principles that are the basis of structure and function, as well as of modeling
of the living system, are [52]:

DK3072_C006.fm  Page 124  Friday, October 20, 2006  1:14 PM



The Metaphor of “Chaos” 125

Simplicity Principle — if any phenomenon is possible in a simple system, it is likely that
a more complicated system will exhibit phenomena of the same type 

Economy Principle — more complicated systems demand greater input of free energy, and
so they are less economical 

Actuality Principle — the present properties of the system depend only on its present
structure

This is why discussions of simple model systems, for example, considerations concerning
structure–property relationships in homogenous solutions of polymeric macromolecules [45], are
important for understanding complex biological systems. Especially useful are theories in which
there is no assumption of equilibria nor of the complete randomness of the system, because living
systems are not in thermodynamic equilibrium. For example, the probabilistic theory of crosslinked
systems and the resulting Topological Gelation Criterion [47] may be applied to cytoskeleton.
Critically branched systems play probably a very important role in living cells. Since sol–gel
transitions occur practically in an all-or-none fashion, gelation is potentially a powerful mechanism
for regulation of cytoplasmic structure, and so, as the Actuality Principle states, cytoplasmic properties.

Nonequilibrium states are the “living” states of any system. In those states, some properties
(such as concentration, electrical charges, etc.) are unequally distributed, and those differences
drive all movements and changes. Equilibrium, the unique state when all properties are equally
distributed, is the state of “death.” It is true not just for a single cell or an organism. The socio-
economical system in which there are no inequalities between the people may not exist for a longer
period of time — it decomposes like a dead organism. If those who “invented” communism knew
thermodynamics, they would understand that communism must necessarily fail, as we all observed
recently. “New is born”— emerging properties occur as a result of nonequalities and nonlinear
interaction between different parts of the system. 

Stock comes to a conclusion that, in our social system, a new type of superstructure is being
formed, that as a group we are becoming a new type of being, which he dubs Metaman [53]. This
superstructure will have the same relationship to all individuals as a single individual has to all his
or her cells. With the growth of the global economy with its world-spanning technologies, our
machines are turning us into a gigantic creature whose needs and goals exceed the needs and goals
of an individual’s as much as an individual’s exceed those of a single cell. Ultimately, the new
superstructure, the new creature, will be composed of a blend of people and machines. 

The notion of human society as a living organism goes back at least to ancient Greece. But it
seems no longer to be a poetic metaphor; it is an evolving reality. Metaman has brains — our
brains, augmented and linked by computer networks. Metaman has senses, like, for example, weather
satellites providing a global, expanded vision. Metaman has memory — all databanks, with stored
information growing literally each minute. And one may say that Metaman has a will — the sum
of all our wills. 

Metaman’s responses to external stimuli, to challenges, will be much slower than those of a
single organism, because the greater is a structure, the longer is the characteristic timescale. But
when seen from a perspective of many decades, on the one side, Metaman’s responses may seem
to be as directed and purposeful as the behaviors of a single organism. On the other hand, Metaman
may show patterns characteristic for autonomous big systems, like, for example, chaotic behavior. 

6.3 CHAOS AND FRACTAL GEOMETRY OF NATURE

Methods of nonlinear dynamics and deterministic chaos theory provide tools for analyzing and
modeling chaotic phenomena and may supply us with effective quantitative descriptors of under-
lying dynamics and of system’s fractal structure. Fractal geometry, a new branch of geometry, has
evoked a fundamentally new view of how both nonliving and living systems result from the
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coalescence of spontaneous self-similar fluctuations over many orders of time and how systems
are organized into complex recursively nested patterns over multiple levels of space. Fractal
geometry has proven to be a useful tool in quantifying the structure of a wide range of idealized
and naturally occurring objects, from pure mathematics, through physics and chemistry, to biology
and medicine. 

But fractals were known long ago, despite the fact that they were not named fractals. The first
fractal was proposed by a Polish mathematician Wladyslaw Sierpinski — it is now well-known as
“Sierpinski’s gasket.” In my opinion, fractals appeared in medicine and biology much earlier than
in mathematics, e.g., in the Chinese notion of a homunculus saying that one may find a kind of
mapping of the whole organism practically on each organ — earlobe, foot, retina of the eye, etc.;
this is a base of different branches of acupuncture, such as auriculotherapy.

Mandelbrot [37] who invented the word says: “I coined fractal from the Latin adjective fractus.
The corresponding Latin verb frangere means ‘to break’: to create irregular fragments. It is therefore
sensible — and how appropriate for our needs! — that, in addition to ‘fragmented’ (as in fraction
or refraction), fractus should also mean ‘irregular,’ both meanings being preserved in fragment.”
So, the term fractal applies to objects in space or fluctuations in time that possess a form of self-
similarity and cannot be described within a single absolute scale of measurement. Fractals are
recurrently irregular in space or time, with themes repeated like the layers of an onion at different
levels or scales. Fragments of a fractal object or sequence are exact or statistical copies of the
whole and can be made to match the whole by shifting and stretching — spatial structures of many
living systems are fractal, while sequential fractal scaling relationships are observed in many
physiological processes. 

Nonlinear dynamical system often have chaotic attractors. Here the metaphor of chaos theory
intimately relates to fractal geometry since strange attractors turn out to have fractal structure.

6.3.1 FRACTAL DIMENSION

Fractal dimension is a measure of how “complicated” a self-similar figure is. In a rough sense, it
measures “how many points” lie in a given set. A plane is “larger” than a line, while Sierpinski
triangle sits somewhere in between these two sets. On the other hand, all three of these sets have
the same number of points in the sense that each set is uncountable. Somehow, though, fractal
dimension captures the notion of “how large a set is.” 

Fractal object has a property that more fine structure is revealed, as the object is magnified,
similarly like morphological complexity means that more fine structure (increased resolution and
detail) is revealed with increasing magnification. Fractal dimension measures the rate of addition
of structural detail with increasing magnification, scale, or resolution. The fractal dimension,
therefore, serves as a quantifier of complexity. The fractal dimension of an object provides insight
into how elaborate the process that generated the object might have been, since the larger the
dimension, the larger the number of degrees of freedom likely have been involved in that process.

Objects considered in Euclidean geometry are sets embedded in Euclidean space, and object’s
dimension is the dimension of the embedding space. One is also accustomed to associate what is
called topological dimension with Euclidean objects — everybody knows that a point has dimension
of 0, a line has dimension of 1, a square is two dimensional, and a cube is three-dimensional (3D).
However, collection of real points has dimension greater than 0, real lines greater than 1, real
surfaces greater than 2, etc. At each level, as the dimensions of an object move from one integer
to the next, the complexity of the object increases; it becomes more area filling from 1 to 2, more
volume-filling from 2 to 3, etc. One familiar example of naturally occurring fractal curves is a
coastline. One cannot use topological dimension for fractals, but instead has to use what is called
Hausdorff–Besikovitch dimension, commonly known as fractal dimension. 

In fact, a formal definition of a fractal says that it is an object for which the fractal dimension
is greater than the topological dimension. One consequence of that definition uses the concept of
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self-similarity — a fractal is an object made of parts similar to the whole. The notion of self-
similarity is the basic property of fractal objects.

Taking advantage of self-similarity is a way to calculate fractal dimension. For example, one
can subdivide a line segment into m self-similar intervals, each with the same length, and each of
which can be magnified by a factor of n to yield the original segment. A square or a triangle may
be subdivided into n2 self-similar copies of itself, each of which must be magnified by a factor of n
to yield the original object. Similarly, a cube can be decomposed into n2 self-similar copies of
itself, each of which must be magnified by a factor of n to yield the original cube (Table 6.1). If
one takes the magnification, n, and raise it to the power of dimension, D, one will get the number
of self-similar pieces in the original object, P:

P = nD (6.4)

Solving this equation for D one easily finds that

D = log(P)/log(n) (6.5)

Using this formula, one can calculate a fractal dimension of some fractals. A mathematical
fractal has some infinitely repeating pattern and can be made by the iteration of a certain rule. For
example, Sierpinski’s triangle S may be decomposed into three congruent figures, each of which
is exactly half the size of S — if we magnify any of the three pieces of S by a factor of 2, we
obtain an exact replica of S; that is, S consists of three self-similar copies of itself, each with
magnification factor 2 (Figure 6.4). 

TABLE 6.1
Dimensional Properties of Abstract Constructs

Object Dimension No. of Copies

Line 1 2 = 21

Square 2 4 = 22

Cube 3 8 = 23

Any self-similar figure D P = 2D

Sierpinski’s triangle 1.58 3 = 2D

FIGURE 6.4 Sierpinski’s triangles — concept of self-similarity and calculation of D. a. The rule for creating
the Sierpinski triangle is as follows: connect the midpoints of the sides of a triangle (this way four smaller
triangles are created) and then delete the middle triangle; this procedure leaves three smaller triangles similar
to the initial one whose midpoints of the sides could then be connected, and so on — after ten iterations one
has as many as 29,524 triangles. In theory, the procedure may be repeated infinitely many times; b. different
types of Sierpinski’s triangles. 

a.                                                                                   b

DK3072_C006.fm  Page 127  Friday, October 20, 2006  1:14 PM



128 Systems Biology: Principles, Methods, and Concepts

So, fractal dimension of Sierpinski’s triangle is (Table 6.1) 

D = log3/log2 = 1.58 (6.6) 

In principle, a theoretical or mathematically generated fractal is self-similar over a limitless
range of scales, while natural fractal images have only a limited range of self-similarity. 

6.3.2 NATURAL FRACTALS 

A mathematical fractal has an infinite amount of detail. This means that magnifying it adds
additional details, so increasing the overall size. In nonfractals, however, the size always stays the
same, no matter the applied magnification. If one makes a graph log(fractal’s size) vs. log(magni-
fication factor), one gets a straight line. For nonfractals, this line is horizontal since the size (e.g.,
length of a segment, area of a triangle, and volume of a cylinder) does not change. For fractal
object, the line is no longer horizontal since the size increases with magnification. The geometric
method of calculating fractal dimension finds that fractal dimension can be calculated from the
slope of this line. 

Both the similarity method and the geometric method of calculating fractal dimension require
measuring of fractal size. For many fractals, it is practically impossible. For these fractals, one
applies the so-called box-counting method [54]. 

Living bodies have many systems that have fractural structure and the pulmonary system is the
best example. It is composed of tubes, through which the air passes into microscopic sacks called
alveoli. Trachea, the main tube of the system, splits into two smaller tubes, called the bronchi,
which lead to different lungs. Bronchi, in turn, split into smaller tubes, which are even further split.
This splitting continues further and further until the smallest tubes, called the bronchioles, which
lead into the alveoli. Another supporting evidence that lungs are fractal comes from measurements
of the alveolar area, which was found to be 80 m2 with light microscopy and 140 m2 at higher
magnification with electron microscopy.

The increase in size with magnification is one of the properties of fractals. Fractal structure of
the bronchial tree is imposed by optimization of resource utilization requirements in the lung, such
as efficient distribution of blood and air. Thus, the morphology of the lung is directly related to its
function, and changes in its structure can be linked to dysfunction. Since the bronchial tree is a
fractal structure, its fractal dimension can be used as a tool for the detection of structure changes
and quantification of lung diseases. 

Similar splitting can also be found in blood vessels. Arteries, for example, start with the aorta,
which splits into smaller blood vessels. The smaller ones split as well, and the splitting continues
until the capillaries, which, just like alveoli, are extremely close to each other. Because of this,
blood vessels can also be described by fractal canopies.

Biological fractal structures such as lungs and the vascular bed represent probably optimal
design for their particular functions, like air flow or blood flow, respectively. It may well be that
the fractal, dendritic trees of neurons are also optimally designed, but, in this case, for the flow of
the most important commodity: information. The surface of the human brain contains a large
number of folds. Its fractal dimension is 2.73 to 2.79, the highest in the animal kingdom. 

Folding of the nasal membrane allows better sensing of smells by increasing the sensing surface.
However, in humans, this membrane is less folded than in other animals, so making humans less
sensitive to smells. The membranes of cell organelles such as mitochondria and the endoplasmic
reticulum are also folded. Fractal dimensions of some biological structures are given in Table 6.2.

Fractals can also be found in various biomolecules such as DNA and proteins.
The similarity method for calculating fractal dimension works for a mathematical fractal, which,

like Sierpinski’s triangle, is composed of a certain number of identical versions of itself. Natural
objects like coastlines or roots do not show exactly the same shape, but look quite similar when
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they are scaled down. Due to their statistical scaling invariance they are called statistically self-
similar. The miniature copy of a structure may be distorted, e.g., skewed; for this case, there is the
notion of self-affinity; within a self-affine structure, the scaling factor is not constant [54, 55].

Certain structures like quasicrystals or network glasses display at any magnification scale
similar, although never strictly identical images. Even in the apparently totally disordered systems
such as glasses or polymer networks, we may observe statistical self-similarity (repetition of
characteristic local structures and certain typical correlations between them), if we use probabilistic
description of the network. This is the most characteristic feature of the self-similarity: the funda-
mental information about the structure of a complicated system is contained already in quite small
samples, and we can reproduce all the essential features by adding up and repeating similar subsets
ad infinitum even if they are not strictly identical like in crystalline lattice, but just very much alike
like in quasicrystals or network glasses. 

It should be emphasized that D is a descriptive, quantitative measure; it is a statistic, in the
sense that it represents an attempt to estimate a single-valued number for a property (complexity)
of an object with a sample of data from the object. 

6.4 CHAOS AND FRACTALS IN MODELING OF NATURAL PHENOMENA

So, fractal structures are intimately associated with nonlinear dynamic processes and chaos, because
chaotic attractors have fractal structure, which, in some sense, is the very essence of a chaotic
system, since it makes a system sensitive to initial conditions and not conservative. It has been
observed that fractal models are essentially unresponsive to errors, while tolerant to the variability
in the environment. This is due to the broad-band nature of the distribution in scale sizes of a fractal
object. 

Microscopic observation of subcellular structural elements — microtubules — shows individual
microtubules that interconvert between phases of growing and shrinking. It was suggested that a
dynamic instability, a road to chaos, can function as a control mechanism for the spatial organization
of microtubule arrays [56], which, in turn, controls important cellular functions such as cell division
(mitosis). On the other hand, a whole organism may be treated as bioreaction, with the law of
metabolism interpreted in terms of heterogeneous catalysis and fractal structure [57]. 

On the cellular level, it was observed [58] that when large arrays of strange attractors are
coupled diffusively through one of the variables, the structure of the dynamics of the system from
response changes chaotic to periodic and form large Archimedean spirals or concentric bands. This
observation seems particularly relevant to the question of the formal temporal structure of the
biological clock in metazoan organisms. In particular, although individual cellular oscillators, as
manifested in the cell cycle, appear to be more or less periodic, cells oscillate with chaotic dynamics.
Only when large aggregates of these cells are tightly coupled can a precise circadian clock emerge.
Immune system also shows both oscillatory and chaotic behavior [59].

TABLE 6.2
Fractional Dimension of Anatomical Structures

Anatomical Structure D

Bronchial tubes Very close to 3
Arteries 2.7
Human brain 2.73–2.79
Alveolar membrane 2.17
Mitochondrial membrane (outer) 2.09
Mitochondrial membrane (inner) 2.53
Endoplasmic reticulum 2.72
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One of the most important practical aspects of fractal analysis may be its use in quantitative
cellular morphometry [54]. It may give deeper insight into the development of complex biological
structures and the processes that contribute to structure forming. One of the advantages of fractal
analysis is the ability to describe irregular and complex objects. 

In cellular morphometry, cells and nuclei can be quantitatively described by measuring their
fractal dimension. For example, evaluation of fractal dimension of nuclear outline of lymphoid cell
could be a useful tool to distinguish between benign and malignant cases. One may use fractal
dimension of imaged contours to directly infer that of 3D surface — the surface’s dimension, DS,
is simply one plus the contours’ dimension, DC:

DS = 1 + DC  (6.7)

It was shown that increase in measured D correlates with perceived increase in morphological
complexity — fractal dimension is a good quantitative measure of the degree of morphological
differentiation; it is also a useful measure for comparative studies across and among species, as
they relate to cellular evolution. 

The use of fractal geometry in microscopic anatomy is now well established and it will be
increasingly useful in establishing links between structure and function.

Another very important practical aspect of fractal analysis is its use in biosignal analysis.
Biosignals are generated by complex self-regulating systems. That is why physiological time series
may have fractal or multifractal temporal structure, while being extremely inhomogenous and
nonstationary. A characteristic feature of nonlinear (as opposed to linear) process is the interaction
(coupling) of different modes, which may lead to nonrandom signal phase structure. Such collective
phase properties of the signal cannot be detected by linear spectral methods. For example, until
quite recently, the basic approach to analysis of brain signals involved the assumption that electro-
encephalogram (EEG)-signal is stochastic. A fundamentally different approach is to view EEG as
the output of a deterministic system of relatively simple complexity, but containing nonlinearities.
When some central nervous system activities stop to be chaotic and become oscillating, a state that
may be called pathological order may emerge in the brain. Since nervous system, starting from a
single neuron, shows fractal structure, it has become more and more obvious that neural activity
may demonstrate deterministic nonlinear dynamics (i.e., chaos).

An important question emerges: Is it healthy to be chaotic [60]. It seems that “active desyn-
chronization” could be favorable to a physiological system. Variations of fractal dimension accord-
ing to particular mental tasks were reported; for example, during an arithmetic task, this dimension
increased. The neural dynamics underlying EEG seems to depend on only a few degrees of freedom.
Also during anesthesia, fractal dimension of EEG signal is decreased — when patient becomes
more anesthetized, EEG becomes less chaotic. Consciousness may thus be described as a mani-
festation of deterministic chaos somewhere in the brain/mind.

Fractal analysis of EEG signals and the development of neurophysiologically realistic models
of EEG generation may produce new successful automated EEG analysis techniques and can have
important diagnostic implications. For example, fractal dimension of EEG changes during sleep,
diminishing from waking state, through stages 1, 2, and 3 to stage 4, and increases again in rapid
eye motion (REM) sleep [61].

Biosignal record is a pattern called waveform — a planar curve that proceeds resolutely
forward — it does not go backward and it does not crossover itself [i.e., it is a collection of (tx)
point pairs, where t values increase monotonically]. To characterize a biosignal like EEG, fractal
analysis in time domain (that is analysis of its waveform on a computer screen or a sheet of paper)
may be more applicable that fractal analysis of the signal represented by embedding data in a
multidimensional phase space; different algorithms have been proposed for such analysis, of which
the method proposed by Higuchi [62] seems to be the best [61].
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 In Higuchi’s method, the time series representing the analyzed waveform (in a computer
memory time by necessity is a discrete variable) is subdivided into k subseries; each subseries
represents again a waveform. If the length of such a curve may be expressed as proportional to
k–D, then D is the curve’s fractal dimension. It measures complexity of the curve — for a simple
curve D equals 1, for a curve, which nearly fills out the plane D is close to 2. 

Supposed that in a computerized data-acquisition system, the signal recorded on a selected
channel is represented by the time series 

x(1), x(2), x(3), …, x (N) (6.8)

where x(i) is the signal’s amplitude at the i-th moment of time (i = 1, …, N) and N is the total
number of points; from this one constructs k subseries x(m,k):

x(m,k): x(m), x(m + k), x(m + 2k), …, x(m + int[(N–m)/k]* k) (m = 1, 2, …, k) (6.9)

where int[…] denotes the greatest integer not exceeding the number in the brackets; m and k are
integers indicating the initial time and the time interval, respectively. For example, if N = 100 and
k = 4 one obtains four subseries:

x(1,4): x(1), x(5), …, x(97)

x(2,4): x(2), x(6), …, x(98)

x(3,4): x(3), x(7), …, x(99)

x(4,4): x(4), x(8), …, x(100)

In Higuchi’s method, the length of the curve represented by x(m,k) is defined as:

(6.10)

where the term (N – 1)/{int[(N – m)/k)]* k} is a normalization factor. Lm(k) are then averaged for
all values of m, 

(6.11)

giving the mean value of the curve length, L(k), for given value of k. The procedure is repeated
for several k (k = k1, k2, …, kmax) and then from the log–log plot of log(L) vs. log(k) using the least-
square method one obtains Higuchi’s fractal dimension of the signal, D:

D = –log[L(k)]/log(k) (6.12)

Higuchi’s fractal dimension is a very useful measure for characterization of EEG signals [61].
Fractal dimension, which is a measure of the signal complexity, helps to differentiate between EEG
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traces corresponding to different physiopathological conditions. It needs much shorter signal epochs
than those needed for obtaining reliable values of fractal dimension of the signal in phase space
by means of the attractor dimension or other correlated parameters. Fractal analysis in time domain
allows investigating relevant EEG events shorter than those detectable by means of other linear
and nonlinear techniques. For example, fractal dimension of EEG-signal clearly demonstrates an
influence of magnetic field on the brain, while no influence of magnetostimulation could be noticed
while inspecting the same EEG-recordings with the naked eye or analyzing with linear methods
like the fast fourrier transform (FFT). Higuchi’s fractal dimension was also used to assess the
influence of phototherapy on patients suffering with seasonal depression [Seasonal Affective Dis-
order (SAD)]; again, EEG-signal assessing with naked specialist eye or using linear methods did
not reveal any evident changes, but calculation of D demonstrates influence of applied phototherapy. 

We have to stress that fractal dimension calculated in time domain as well as “classical” fractal
dimension used in quantitative morphometry (like that of a coastline or of Sierpinski’s gasket)
should not be confused with fractal dimension of a chaotic attractor calculated in the phase space
of a dynamical system. Attractor dimension, e.g., correlation dimension, is usually fractal, but it
may be significantly greater than 2, it may provide some measure about how many relevant degrees
of freedom are involved in the dynamics of the system under consideration. Calculation of attractor’s
fractal dimension requires previous embedding of the data in phase space, using, e.g., Taken’s time
delay method. Higuchi’s fractal dimension is always between 1 and 2 since it characterizes com-
plexity of the curve representing the signal under consideration on a two-dimensional plane.
Higuchi’s algorithm works on raw data — one does not need to embed data in a phase space.

6.5 EXAMPLES OF ORDER, CHAOS, AND RANDOMNESS 
IN NATURAL PROCESSES 

In nature, one may observe ordered, chaotic, and random systems. It seems that in biology, chaotic
systems are the most important. Ordered equilibrium systems form structures like crystals that are
inert and unreceptive — they are not able to change when conditions in their environment change.
On the other hand, processes in completely random systems like gases have so many degrees of
freedom that they are not able to built any structure that may support any purposeful function for
a certain sufficiently long period. Chaotic system are between these two extremenesses — chaotic
processes may form structures that are lasting and at the same time are able to react on changes
in the environment, i.e., to evolve. Ability of easy adaptation to changing external conditions is
more important for system surviving than a stiff adjustment to some strictly defined conditions —
that is why chaotic systems, which adapt extremely easily, are so important, and a decrease of
chaocity of a system may lead to serious pathology, and so one may formulate. 

Chaos has many different faces. One may observe chaos in chemical and mechanical systems,
in living organisms and in inanimate nature, in man-made structures and in planetary systems.
Chaos affects our bodies and our senses. And there are different “roads to chaos,” roads leading
through oscillating patterns and/or spatially organized nonequilibrium structures. In biology, chaos
is present on all levels of organization — from single cell to human brain to population.

Cytoplasm of a living cell is in perpetual movement that may be observed under microscope.
Mechanical properties of cytoplasm are changed by undergoing sol–gel transitions, similar to those
observed in colloidal systems or in producing a jelly. Such sol–gel transition processes in micro-
volumes are reversible and may be chaotic or quasiperiodic [45,52] — microgels are formed and
then dissolved in different places again and again, as long as the cell remains in a far-from-
equilibrium state. Irreversible gelation of the whole cytoplasm is probably connected with cell
death [63]. 

Is human brain activity chaotic? It cannot be fully random because then we would not be able
to perform behaviors such as moving our limbs purposefully. It neither cannot be ordered, i.e.,

DK3072_C006.fm  Page 132  Friday, October 20, 2006  1:14 PM



The Metaphor of “Chaos” 133

unambiguousity determines (in the classical mechanics’ sense) because then it could not be creative.
Fundamental overall properties of the brain, up to now almost taken for granted, are perhaps
maintained/exercised by a nonlinear deterministic chaotic mode of brain function. If this is the
case, borderline psychopathological phenomena, when they flare up, can be explained as resulting
from sudden reduction of such a deterministic chaotic mode. In brain activities, chaos may have
different functions: 

1. Owing to the inseparability of the initial conditions from the equations of motion for
nonuniform strange attractors, mutual information can be transmitted without attenuation.
This is in opposition to the Shannon–Weaver rule for transmission in nonchaotic or uniform
systems that there is always attenuation, and it reflects the fact that chaotic dynamics
creates as well as destroys information during transmission and other operations. 

2. Chaos “prevents falling into obsession,” meaning degeneration to fixed-point attractors. 
3. Chaos can retrieve patterns by rapid search through phase space. 
4. Chaos can control a system dynamically and “buffer” it against unexpected stimuli,

replacing “homeostasis” with “homeodynamism.” 
5. Chaos can generate the patterns (which Freeman calls “carrier” waves) that encode

information (and as Freeman noted decode as well).
6. Chaos can facilitate the reorganization of functional units in brains that are needed for

flexibility, insight and creation. 

Also on the level of population dynamics, there is neither a full order nor a complete random-
ness. Populations of many species, especially those quickly reproducing, may show deterministic
chaos. Despite the model’s simplicity, over time the total number of individuals fluctuated wildly.
It could remain practically steady for thousands of generations, then without any warning suddenly
(like we saw in the case of Lorenz’s systems. (Figure 6.1 to Figure 6.3) boom or crash. They could
cycle up and down for several generation or show a completely chaotic behavior, and then suddenly
become steady again. It is evident that studies of a population over several years may be absolutely
useless to predict population numbers for next years. Also failing to find an environmental cause
of a sudden, mysterious decline in a population may be result of the simple fact that there is no
such a cause there. It is “a hopeful fact” that nature is so unpredictable. It probably helps to maintain
the biological diversity of the planet. A kind of instability in population dynamics may be what
keeps one species that might otherwise completely dominate from doing so, thus allowing the
others to persist. Conrad [64] notes five possible functional roles for chaos in population dynamics: 

1. The generation of diversity, as in the predator-prey species where the exploratory behavior
of the animal is enhanced.

2. The preservation of diversity; for example, the diversity of behavior is used by the prey
to act unpredictably and thereby elude being caught by the predator. 

3. Maintenance of adaptability, that is to disentrain processes — in populations this would
correspond to keeping a broad age spectrum. 

4. Cross-level effect, for example, chaos on genetic level would contribute to the diversity
and adaptability on the population level. 

5. The dissipation of disturbances, phenomenon observed in synchronization of chaotic
systems, is achieved by the sensitivity of orbits on the chaotic attractor to initial condi-
tions; the attractor ensures dynamical stability of the chaotic system like a heat bath
ensures that temperature of a system is kept constant.

One used to think about chaos as something commensurate with a pathology. It turns out that
the exact opposite may be true. For example, increase of order (decrease of chaos) in the brain that
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manifests in decrease of fractal dimension of EEG signal may lead to epileptic seizures [61].
Similarly, in heart, healthy states seem to be more chaotic than sick ones — when the heart patient
is about to die, the heart rhythm becomes actually more periodic. Different diseases were considered
to be just disturbed biological processes of the organism. Some diseases, especially those which
are characterized by the disorders in the differentiation (malformations and malignant tumors), may
be understood as processes of the disturbed self-organization. Mackey and Glass [65] introduced
a revolutionary concept of a dynamic disease, defined as one that occurs in an intact physiological
control system operating in a range of control parameters that leads to abnormal dynamics. Con-
gestive heart failure [66], fetal distress syndrome [67], neurological disorders, including epilepsy
and movement disorders [68], and aging processes [69] can be considered and modeled as dynamic
diseases.

It is noticeable that the same phenomena, which may be observed in medicine and physiology
on the level of a single organism, may also be observed on other levels of organization, from
subcellular “suborganisms” to “superorganisms” of whole populations. Cohen and Stewart in The
Collapse of Chaos present the thesis that explaining complexity is easy, it’s explaining simplicity
that’s hard [70].

6.6 EXAMPLES OF SYSTEMS AND PROCESSES THAT ARE NOT 
EASILY MODELED WITH CHAOS

Our world is mostly nonlinear. The science of nonlinear dynamics was originally christened “chaos
theory” because from nonlinear equations, unpredictable solutions emerge. In classical Physics,
linear models were successfully used — both classical Newtonian dynamics and Maxwellian
electrodynamics are linear. But all models are only approximation of real systems and processes,
and linear models may serve as good approximations of reality only if long-term influence of
interactions with other (sub)systems may be neglected. Long-term even movements of astronomical
bodies may become chaotic. 

On the other hand, the difference between classical random (stochastic) systems and determin-
istic-chaotic systems and processes is in my opinion rather quantitative than qualitative. A stochastic
system has, in theory, an infinite number of degrees of freedom, so if a system has really a big
number of degrees of freedom, it behaves randomly, i.e., it is governed rather by laws of probability
and statistics than by dynamic equations; the problem arises of what that “big number” really is.
If a system under consideration has many “irreducible” (equally important) degrees of freedom, it
is still considered stochastic. In practice, even using modern computers, we cannot deal with more
than approximately 20 to 30 nonlinear dynamical equations. If a nonlinear system has only a few
(three or more) degrees of freedom or if the number of degrees of freedom may be reduced to only
a few “really important” ones, the system is considered to be deterministic-chaotic. In time domain,
instead of speaking about degrees of freedom, one should rather speak about subprocesses with
different characteristic timescales — really important are those subprocesses that show character-
istic timescale comparable with the time of observation. Chemists have for a long time used the
so-called quasistationary approximation — the chemical species with characteristic timescales much
shorter than the time of observation reach their stationary concentrations and so they may be
eliminated from kinetic dynamical equations by using Tikhonov’s Theorem [71], while those species
with characteristic timescales much longer than the time of observation have constant (practically
initial) values. Haken’s [18] concept of order parameters is based on similar principles — due to
the differences in characteristic timescales, the degrees of freedom of the system are reduced. We
need to stress that even trajectory of a Brownian particle (despite the fact that Brownian motion
has always been used as a classical example of a stochastic process) may be characterized by its
fractal dimension [54]. 
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Not all nonlinear dynamical systems are chaotic. First, on a “road to chaos” complex system
shows quite regular behavior, like a simple stable point or a few critical points — stable, unstable,
and saddle; then when system parameters change, one may observe limit-cycle types of oscillations,
then period doubling, etc. Nonlinear dynamics of such systems may be modeled using cellular
automata, graph theory, neural networks. But, on the other hand, in linear systems, branching
processes and fluctuations (noise) may produce signals that look very, very similar to those produced
by nonlinear dynamics in chaotic systems, and it is often not easy to demonstrate that the system
under consideration shows nonlinear dynamics.

Nonlinear phenomena are well known in physics. If one connects together two balloons — one
inflated to be like an apple, another like a small watermelon — the bigger takes out the air from
the smaller one, which collapses; it is so because the volume–pressure characteristics for air closed
in a balloon is nonlinear. In Medicine, awareness of nonlinear effects is rather little, despite the
fact that such effects are very well known from everyday life. For example, e.g., small amount of
alcohol acts as a stimulator, while in a large dose, alcohol is poisonous; in general, due to nonlinear
effects, a small dose of a drug or radiation may have a completely opposite effect than a greater
dose — this phenomenon of nonlinearity in dose–response dependence is called hormesis [72].

However, deterministic chaos governs only a small subset of chaotic systems. Another class of
nonlinear dynamics models that are not modeled with “classical” chaos theory are reaction-diffusion
systems (RDS). These systems are modeled not by quasilinear ordinary differential equations (QODE)
but by quasilinear partial parabolic differential equations, QPPDE, i.e., diffusion equations with
nonlinear source–sink term, which is due to a chemical reactions. In RDS, one observes interesting
processes of pattern formation [15].

Scientists hoped that development of the chaos theory would suggest explanations of brain
activity — a resolution of the discrepancy between mesoscopic global order and aperiodic seemingly
random activity at microscopic levels. Brains work with large masses of neurons. Each neuron
typically receives synaptic input from thousands of other neurons within the radius of its dendritic
arbor, and it gives synaptic output to thousands of others within the radius of its axon, and not the
same thousands because each neuron connects with less than 1% of the neurons within its arbors,
owing to the exceedingly high packing density of cortical neurons. These properties of dense but
sparse interconnection of immense numbers of otherwise autonomously active nonlinear neurons
provide the conditions needed for the emergence of mesoscopic masses, ensembles, and populations,
which have properties related to but transcending the capacities of the neurons that create them.
The most significant property of ensembles is the capacity for undergoing rapid and repeated global
state changes [48]. However, models of low-dimensional deterministic chaos have failed to explain
brain activity — one still knows too little about mesoscopic brain states. Freeman [48] suggests
that what happens in brain and what manifests itself through EEG signal will be called “stochastic
chaos,” because it arises from and feeds on the randomized activity of myriads of neurons, and it
provides the basis for self-organization.

6.7 CONCLUSIONS AND OPEN PROBLEMS 

Chaotic systems are defined as those showing irregular (nonperiodic) behavior with extreme sen-
sitivity to initial conditions and to small changes in system parameters due to their nonlinear nature;
although chaotic behavior appears to be erratic or random, it is governed by deterministic equations
of motion, in contrast to stochastic motion which, like noise, is described by probabilistic laws [73].

In everyday language, the word “chaotic” is used to denominate either “completely unordered”
systems or “absolutely unpredictable” processes. Since we often think in terms of words rather
than of pictures, words “chaos, chaotic” ring in our mind associations with something unordered
and unpredictable. Chaos is apparently unpredictable behavior arising in a deterministic system
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because of great sensitivity to initial conditions. Chaos arises in a dynamical system if two arbitrarily
close starting points diverge exponentially, strictly speaking this is not true. If the divergence is
exponential, it is still bounded. The only circumstance for which it is unbounded is for time duration.

Recent years have seen an extraordinary growth of interest in complex systems and deterministic
chaos. Together they point to the emergence of new paradigms, cutting across traditional disciplines.
The overall approach is revolutionary since it requires us to adopt a new frame of reference. Even
apparently simple deterministic systems can behave in a seemingly unpredictable manner. There
already exists a variety of procedures for delineating whether chaotic behavior results from a
nonlinear dynamical system with a few degrees of freedom, or whether it is caused by a stochastic
noise.

We all know that if we need to keep something in order, it usually induces anxiety and tension.
To disconcert the order seems to be much more effortless and makes us feel better. To “put something
in order” means to decrease the entropy, and according to the Second Law of Thermodynamics,
requires work to be done on the system. Disorder increases “by itself.” But what we learned from
theory of chaos is that disorder does not have to mean a lack of any governing dynamic laws —
that chaos may be deterministic. But it still may be much easier to keep a system in such a chaotic
state rather than in the ordered state. Chaos is more natural then order. 

Many scientists do believe that functional complexity and behavior of living systems are due
to an interaction of an immense number of a very few simple basic mechanisms on molecular or
even submolecular level, which combined together in a nonlinear way, are responsible for even the
most complicated phenomena. One does observe some very similar phenomena in simple chemical
systems as in a living organism. But what is the difference between animate and inanimate, between
biological systems and physicochemical systems? Critically, the metaphor of “chaos” does not give
a clue how to answer this fundamental question. 

But more and more scientists come to the conclusions that behind matter lies energy but also
that behind energy lies wisdom that is expressed as information that life has a direction and purpose,
which cannot be explained in purely physical terms. “The age-old theological view of the universe
is that all existence is the manifestation of a transcendent wisdom, with a universal consciousness
being its manifestation. If I substitute the word information for wisdom, theology begins to sound
like quantum physics” — writes Schroeder [74]. And he adds: “To call the phenomenon of life
complex trivializes the reality … the ordered, information-containing complexity found in life is
of a type qualitatively different from that found in the sub-structures from which it arose….”
Systems can give rise to secondary systems that are more complex, but that complexity is a fractal
extension, an increase in amount but not in type, of the original systemís complexity. With life, the
increase in complexity seems to be one of a new type as well as amount.” As the Pope John Paul
II said: “Providence does not know a notion of pure chance.”

As in practically any scientific problem, various authors agree (and even overlap) on certain
points concerning chaotic behavior, appear diametrically opposed in some instances, and have mutu-
ally inclusive stances in other cases; certain tenets from each model may ultimately prove relevant
to the whole. We often are like a Monsieur Jourdain from Moliere’s “Le Bourgeois Gentilhomme”
who says (II.iv): “Good heaven! For more than forty years I have been speaking prose without knowing
it.” The most likely reasons for failing to observe some phenomena and processes where they exist
appear to be due to experimental design. We often do not see what we do not look for. 
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7.1 WHEN ENGINEERING DECISIONS INVOLVE 
LIVING PROCESSES

 

We live in “the biological century.” To an extent never previously imagined, engineering and
economic decisions are being influenced both by the biological paradigm, in general, and by specific
biological issues in particular [1]. As Friedman notes, “All fields of engineering will be players in
the biological century, enriching and complementing one another, and fulfilling a promise we can
hardly imagine” [2]. Biological questions affect practical decisions about issues both exotic and
mundane. 

At the exotic end of the spectrum, serious decisions are influenced by the possibility of
extraterrestrial life. For example, on September 21, 2003, NASA deliberately flew the Galileo
spacecraft into the atmosphere of Jupiter [3]. The reason for this decision was that the spacecraft
was running out of maneuvering fuel, and there was a risk that the uncontrolled spacecraft might
eventually crash into Europa. Since there is a possibility that Europa has liquid water, and that it
may harbor life, a crash of a terrestrial spacecraft into Europa posed the risk of contaminating
indigenous organisms with terrestrial microbes. 

The characterization of extraterrestrial life is an awkward one. At the most fundamental level,
would we recognize it if we see it? The difficulty is shown by the search for life on Mars. “The
three biology experiments discovered unexpected and enigmatic chemical activity in the Martian
soil, but provided no clear evidence for the presence of living microorganisms in soil near the
landing sites” [4]. Because the Viking experiments to detect life were based on terrestrially biased
preconceptions, they produced inconclusive results. “In the case of Mars, the issue has been
complicated by the emotional belief in an Earth-like Mars, which has largely been shown to have
been a myth” [5]. The debate as to whether or not available data prove or disprove the existence
of life on Mars continues to the present time [6,7]. 

It is not surprising that the problem of identifying extraterrestrial life is difficult, when one
considers how difficult it is to distinguish living from nonliving processes even on Earth. The
disease carrier for “Mad Cow Disease” is a protein called a prion. Because it behaves in a way
that suggests a capacity to replicate and preserve itself in a hostile environment, the prion was
formerly (before its identification) assumed to be a living organism. However, despite the fact that
a brain into which one pathogenic (bad) prion is introduced rapidly becomes infested with bad
prions, they do not reproduce. Through a process similar to enzyme catalysis, bad prions cause the
refolding of the chemically identical good prions into a conformation in which they are pathogenic.
It has been shown that no new macromolecules are synthesized during this apparent change of
conformation [8–10].

The point illustrated by these extreme examples is that preconceptions can lead to misguided
practical decisions. For instance, several fabulously expensive interplanetary missions have led to
inconclusive experimental data regarding the existence of extraterrestrial life, because the experi-
ments were not designed to recognize the relevant distinctive features of living processes. If
engineers are to be serious “players in the biological century,” they must begin by appreciating
how living processes 

 

differ fundamentally 

 

from traditional engineering systems.

 

7.2 THE ROLE OF CAUSATION 

 

The distinction between living and nonliving processes is prototypical of all the problems the
engineer faces when dealing with organisms. Determining whether or not the process is an organism
appears to be a fundamental classification problem that arises in biological and chemical research.
It is prototypical of all classification problems, the identification of whether a process is a member
of a given class. The solution of a classification problem typically informs the solution to the
generic engineering problem, deciding what to do next in the face of a given situation. 
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Feature identification is believed to be the most difficult aspect of the classification problem
[11]. As Robert Rosen has noted [12], the most reliable features of any system (process) are the
entailment structures that constrain its behavior. He writes: “Any system, be it formal or natural,
is characterized by the entailments within it. Thus, a 

 

formal

 

 system is characterized by its inferential
structure, which entails new propositions from given ones. And a 

 

natural

 

 system is likewise
characterized by its causal structure” [12]. 

 

7.2.1 C

 

HARACTERIZATION

 

 

 

BY

 

 C

 

AUSATION

 

To appreciate how a natural system is characterized by its causal entailment structure, we must
first understand the Modeling Relation (MR). This particular relation has been known for well over
a century. “We form for ourselves images or symbols of external objects; and the form which we
give them is such that the logically necessary (denknotwendigen) consequents of the image in
thought are always the images of the necessary natural (naturnotwendigen) consequents of the thing
pictured” [13].

In describing the properties of the MR, Rosen tells us “modeling is the art of bringing entailment
structures into congruence [14]. However, this statement seems to leave us no wiser than when we
started. How does art enter into the discussion; are we not instead supposed to be scientific? What
is an entailment, much less an entailment structure? What does it mean that two different entailment
structures are congruent? In what sense are they not identical? If they are not identical, what
similarity between them causes us to declare them congruent? Why do these questions matter?

The first point to appreciate is that the MR is a relation in the mathematical sense [15, 16].
Suppose that 

 

A

 

 and 

 

B

 

 are sets, and that there exists a set, 

 

R

 

, of ordered pairs, where the first element
of each pair in 

 

R

 

 is an element of A, and the second element of each pair in 

 

R

 

 is an element of 

 

B

 

.
In mathematical notation: 

 

a

 

∈

 

A

 

, 

 

b

 

∈

 

B

 

, (

 

a

 

,

 

b

 

)

 

∈

 

R

 

 

 

⇔

 

 

 

aRb

 

. In the MR, the members 

 

a

 

 and 

 

b

 

 of each
ordered pair in 

 

R

 

 are entailments from two different systems. 
Entailments are the relationships that constrain the organization of a process. There are two

sorts of systems that might appear in the MR, natural systems and formal systems. Natural systems
are systems in physical reality that have causal linkages; if certain causative events impinge upon
a natural system, then the system will behave in a certain way, or produce certain events in effect.
This consequential linkage of cause and effect in a natural system is a causal entailment. If event
P causes event 

 

Q

 

, the relationship 

 

P

 

 

 

⇒

 

 Q

 

 is a causal entailment [17].
Formal systems are conceptual systems that have inferential linkages; if certain hypothetical

propositions impinge upon a formal system, then they will produce certain consequential proposi-
tions in conclusion. This consequential linkage of hypothesis and conclusion in a formal system
is an inferential entailment. If proposition 

 

R

 

 implies proposition 

 

S

 

, then the proposition 

 

R

 

 

 

⇒

 

 

 

S

 

 is
an inferential entailment [17]. In formal systems that are descriptive of processes of life and mind,
impredicative inferential entailment structures and the semantics implied by them abound [18].
Despite the seeming similarity of terminology, a formal system in a MR is not to be confused with
Hilbert’s strictly syntactic formal system, more commonly called a formalism [19].

Entailment structures are inherent within a system; they are the distinguishing features that
characterize the system [12]. They do not cross over from one system to another. In Figure 7.1, we
see a natural system, N, distinguished by its structure of causal entailments, where causal entailment
“a” is the relation “event 

 

h

 

 causes event 

 

j

 

.” Formal system, F, distinguished by its structure of
inferential entailments, where causal entailment “b” is the relation “proposition 

 

p

 

 implies propo-
sition 

 

q

 

.” The entailment structures of two distinct systems are distinct from one another; causes
or hypotheses in one do not produce effects or conclusions in the other. In fact, this provides the
answer to one of the questions posed above. Its self-contained entailment structure is what provides
identity to a system and distinguishes it from other systems.

The fact that distinct systems are nonidentical does not preclude them from being regarded as
being in some sense similar. Similar systems should have distinguishing features that closely
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correspond to each other; similar systems belong to the same equivalence class. Dissimilar systems
should have distinguishing features that do not closely correspond to each other; dissimilar systems
belong to different equivalence classes. The partitioning into equivalence classes is based on the
entailment structure. As already noted, the distinguishing feature of a system is its entailment
structure. Thus, we would expect similar systems to have entailment structures in which there is
some degree of correspondence between the entailments. 

To establish this correspondence, consider a system of encodings and decodings [20]. For
example, we might have a system of encodings that encodes a set of events in the natural system,
N, in Figure 7.1, into a set of propositions in the formal system, F. We might also have a system
of decodings that decodes a set of propositions in the formal system, F, into a set of phenomena
in the natural system, N. Although the two systems remain independent in the sense that causes or
hypotheses in one do not produce effects or conclusions in the other, encodings and decodings can
link the two systems. 

This linkage between entailment structures provides the means of determining the similarity
between two systems. Suppose that an event, 

 

h

 

, in N can be encoded to a proposition, 

 

p

 

, in F; we
can think of the encoding arrow, c, in Figure 7.1 as a measurement on a natural system. Suppose
further that the proposition, 

 

p

 

, when applied as a hypothesis in the inferential structure in F entails
another proposition, 

 

q

 

, in F as a conclusion. In other words, the two propositions are entailed as
an implication, b = (

 

p

 

 

 

→

 

 

 

q

 

), in F. Suppose that this entailed proposition, 

 

q

 

, in F can be decoded
into an event, 

 

j

 

, in N; we can think of the decoding arrow, 

 

d

 

, in Figure 7.1 as a prediction by a
formal system. 

Rosen identifies the similarity as congruency between the entailment structures, and defines it
in the following way [21]. Suppose that in the underlying reality, the event 

 

h

 

 in N causes event 

 

j

 

in N. In other words, the two events are entailed as a causal linkage, 

 

a

 

 = (

 

h

 

 

 

⇒

 

 

 

j

 

), in N. Suppose
further that the linkages commute. Event 

 

h

 

 is encoded by c to proposition 

 

p

 

, c = (

 

h

 

 

 

⇒

 

 

 

p

 

). We
already have b = (

 

p

 

 

 

⇒

 

 

 

q

 

). Then suppose 

 

d

 

 = (

 

q

 

 

 

⇒

 

 

 

j

 

), decoding proposition 

 

q

 

 to event 

 

j

 

. Then we
concatenate these entailments, c + b + d = 

 

h

 

 

 

⇒

 

 

 

p

 

 

 

⇒

 

 

 

q

 

 

 

⇒

 

 

 

j

 

. We note that this concatenation of
entailments exactly corresponds to the causal entailment 

 

a

 

 = (

 

h

 

 

 

⇒

 

 

 

j

 

). In other words, the commu-
tation is also described as 

 

a

 

 = c + b + d. If there exists no such entailment b in F, having a
commutative relationship with some entailment 

 

a

 

 in N, then the two systems do not have congruent
entailment structures. Entailment structures are congruent to the extent that such correspondences
between entailments exist.

 

FIGURE 7.1

 

The Rosen MR. A natural system (N) is a system in ontological reality. A Formal System (F)
is an abstract representation. The entailment 

 

a

 

:

 

h

 

 

 

⇒

 

 

 

j

 

 is the representation of a causal entailment in N; the
entailment can be read as “event 

 

h

 

 causes event 

 

j

 

.” The entailment b:

 

p

 

 

 

⇒

 

 

 

q

 

 is the representation of an inferential
entailment in F; the entailment can be read as “proposition 

 

p

 

 implies proposition 

 

j

 

.” The entailment c:

 

h

 

 

 

⇒

 

 

 

p

 

is the representation of a measurement; the entailment can be read as “event 

 

h

 

 corresponds to proposition 

 

p

 

.”
The entailment 

 

d

 

:

 

q

 

 

 

⇒

 

 

 

j

 

 is the representation of a prediction; the entailment can be read as “proposition 

 

q

 

corresponds to event b.” The MR is a relation between the set of events in N and the set of propositions in F.
The “+” signifies concatenation. The condition for the MR to exist is that there must be an entailment in N,
an entailment in F, a measurement and a prediction such that when the measurement is concatenated with the
entailment in F is concatenated with the prediction, the same result is obtained as the result of the entailment
in N. In other words, the MR exists between two sets of entailments if sets contain entailments that commute.

a: h=>j

c:h=>p
b:p=>q

Natural
System (N)

MR={(a,b) | a = c +b +d}

d:q=>j

Formal
System (F)
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If such correspondences between the entailments in the two systems do exist, then we can learn
something about one entailment structure by observing the other. This is the essence of the MR.
When it is applied to a formal system to obtain predictions about a natural system, the inferential
entailments in the formal system correspond to the causal entailments in the natural system. Where
the relationship holds up and where it breaks down are both understood. This is where the MR
differs from “black box” simulations. Construction of a “black box” is a simple curve fit. It makes
no claim about the causal links in underlying reality, offers no understanding of the natural system
it purports to describe, and offers no warning as to when the description will break down. 

In contrast, for any valid MR, the identification of the encodings and decodings between two
systems is an act of discovery based on insight or understanding. The benefit of this understanding
is the awareness of the specific entailments so described, and a clear indication of the scope of
applicability (or nonapplicability) of the formal system as a model. The cost of this understanding
is that it is an art and not a science in the reductionist sense; there is no automatic or algorithmic
method for determining either the encodings or decodings. In fact, there is not even any necessity
or assurance that the system of decodings can be obtained from some straightforward inversion of
the encodings. 

This digression into modeling has laid the background for identifying the crucial distinguishing
features of a process. The distinguishing feature of a natural process is the structure of causal
entailment that constrains the behavior of the system. We can gain novel insight into that causal
entailment structure by asking questions about a model of the process, where a model is a process
with an entailment structure that commutes with the entailment structure of the process being
modeled. However, the crucial point remains; 

 

a natural process is characterized by its structure of
causation

 

.

 

7.2.2 C

 

LASSES

 

 

 

OF

 

 C

 

AUSATION

 

An effect or event occurs, and we ask, “Why did this happen?” Aristotle said that any event is the
result of a transformation, and it has multiple kinds of causes [22]. Merely asking why an event
happened is not specific enough. We can ask, “What is the input of the transformation?” This is
important, because, in the absence of an input, a transformation produces no output. What we
would call the input to the process is, in Aristotle’s parlance, the 

 

material cause

 

.
However, in the absence of other influences, a material cause does not spontaneously transform

itself into something else. In an ordered Universe, the transformative process must operate according
to constraints that we characterize by laws. The intersection of the constraints inherent in reality
(that we characterize as Laws of Nature) and the morphology of a natural system result in a specific
structure of constraints on that system, often characterized as a Law of Behavior specific to that
system. These describe the constraints on the behavior of the input, the process, and the output.
Aristotle called this constraint 

 

efficient cause

 

. As a popular example, it is often said that the efficient
cause of a house is the “builder’s know-how.” In a linear engineering system, the transfer function
characterizes the efficient cause. It is important to note that “efficient cause” is not to be confused
with the conventional concept of “efficiency”; the two terms refer to entirely different concepts. 

To account for the specific form of a specific output, there must be a constraint on efficient
cause. That constraint is 

 

formal cause

 

. This is an abstraction of the output, rather than the output
itself. “The form is the definition” [23]. For example, if the effect of a process is to produce a
house, then the formal cause is the quality of “houseness,” not the house itself. In the house analogy,
it is often said that the formal cause of a house is the blueprint, the representation of the specific
form of the house. The form or definition is seen in the parameters that would represent properties
of specific components (such as inductance and capacitance values) in the transfer function and
would affect specific constraints on the output of the particular system (such as resonant frequency)
[24]. For example, the value of the coefficients of a finite impulse response (FIR) filter would be a
formal cause and would be visible in specific consequences such as the actual location of the passband. 
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By far the most controversial of the Aristotelian causes is final cause, the answer to the question,
“What purpose is the effect for?” For man-made productions, this may not be a big problem. A
servo achieves whatever purpose its designer chooses; beyond that, it has no effect on final cause
and is unaffected by it. In the case of naturally occurring mechanisms, such as planetary orbits,
questions of final cause are disallowed. The perfectly mechanistic Universe of classical physics is
not for anything; the Universe is simply a historic accident, unfolding without goal or purpose.
The crucial point is that no mechanism, natural or man-made, produces its own final cause. 

 

7.2.3 W

 

HY

 

 M

 

ACHINES

 

 DO WHAT THEY DO

To appreciate how causation works in traditional engineering systems, consider the causal
entailments illustrated by the linear servomechanism in Figure 7.2. The effect or output of the servo
is characterized by Y(S). What causes Y(S)? What the servo does is to transform X(S) into Y(S).
One of the causes is material cause, X(S), a set of present and previous states also known as input
or initial conditions. When engineers speak of “causal systems,” they are referring only to material
cause. There is feedback in the system, but it occurs only on the level of material cause. It is closed
to material cause. In other words, material cause is an integral part of the process. 

Obviously, the transformation of X(S) into Y(S) does not proceed willy-nilly. The process is
constrained or entailed, by Y(S) = H(S) X(S). For a linear time invariant case, H(S) is technically
termed the transfer function. The transfer function is a special instance of a Law of Behavior or
dynamical law, a description of how the mechanism constrains the transformation process. The
Law of Behavior (here characterized by H(S)) is another answer to the question of why Y(S)
occurred. In a linear system, the transfer function characterizes the efficient cause.

The transfer function is determined by the interaction of the physical morphology of the servo
and the constraints inherent in reality that are often characterized as the Laws of Nature (Maxwell’s
equations, Newton’s Laws of Motion, and so on). Efficient cause forces behavior by constraining
the possible allowable behaviors. Crucially, the constraint imposed by the efficient cause of any
natural process depends on the physical morphology of the process. 

It is worth reiterating the distinction between formal and efficient cause. To change the prop-
erties of a process by changing its morphology, and hence its dynamical laws is to update the
efficient cause. To tune or modulate the parameters (diffusion rate, capacitance, etc.) of a process
while leaving the morphology unchanged is to update the formal cause. This distinction is important
in interpreting biological behavior. 

A very simple concrete example of causation in machines is shown in Figure 7.3. The effect
is the output V2. The material cause is V1. Efficient cause is the transfer function H(S) =
S2LC/(S2LC + 1), where S is a property of the material cause, and the values of parameters L and
C represent formal cause. There is no final cause. 

A consequence of the absence of final cause is that there is no entailment of the properties of
the parts due to the influence of the whole. In the absence of final cause, the influence of the parts

FIGURE 7.2 A linear servomechanism. X(S) is the representation of the input signal. Y(S) is the representation
of the output signal. H(S) is the representation of the “transfer function,” a mathematical expression that
completely characterizes the linear servomechanism. The “–” sign in the circle indicates negative feedback;
a replica of the output signal is coupled in parallel but out of phase with the input signal. 

X(s) – H(s) Y(s)

DK3072_book.fm  Page 144  Thursday, October 19, 2006  6:21 PM



Biological Complexity: An Engineering Perspective 145

is presumed to entail all of the properties of the whole. An example is shown in Figure 7.4. We
have three subsystems, whose efficient causes are fully characterized by T(S), U(S), and W(S).
Morphologically, they are connected in series, and constitute the parts of a larger system whose
efficient causes is fully characterized by X(S) = T(S)U(S)W(S).

This relationship is typical of the principle of “upward causation” illustrated in Figure 7.5.
Efficient cause of machines is entailed in a linear hierarchy. The system characterized by X(S) is
fully entailed by subsystems characterized by T(S), U(S), and W(S) in a relationship governed by

FIGURE 7.3  A series electrical circuit. The circle with a wave inside represents a voltage source whose
value is V1, the input. Element C is a lumped capacitance. Element L is a lumped inductance. The “three-
pronged” symbol is ground. V2, the voltage across the inductor, is the output.

FIGURE 7.4  A linear system made up of linear subsystems. T(S), U(S), and W(S) are the transfer functions
subsystems in series. From the perspective of the world “outside the box,” a composite transfer function X(S) =
T(S) U(S) W(S) is an exact equivalent.

FIGURE 7.5 A linear hierarchy of linear systems. Transfer function T(S) is determined by the properties and
morphological layout of its internal components; likewise for U(S) and W(S). The transfer function of X(S) is
determined by the transfer functions and morphological layout formed by the subsystems. The system char-
acterized by X(S) and similar components constitute a larger system, which in its turn might be a subsystem
in an even larger system. In principle, this regress of systems serving as subsystems of larger systems can
increase without limit. Significantly, the properties of the larger system (represented by its transfer function)
are completely determined by the properties its parts (represented by their transfer function), but the properties
of the parts are unaffected by their membership in the whole. Abstractly, the transfer functions of the subsystem
are unaffected by the context provided by the larger system of which they are members.

V1 V2

C
L

T(S) U(S) W(S)

X(S)

Subsystem to which X(S) belongs
is determined by...

T(S), U(S) and W(S) which
are determined by...

Parts in a morphology

X(S) (and similar) which
is determined by...
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their morphological relationship. The subsystems characterized by T(S), U(S), and W(S) are fully
entailed by subsystems of relationships governed by their morphologies. In the direction of increas-
ing scale, the system whose efficient cause is characterized by X(S) can serve as one of many
subsystems in an even larger system, and the efficient cause serves as an entailment on the properties
of that larger system. 

The process is context independent. There is no provision for the possibility that T(S), U(S),
or W(S) might be influenced by their participation in X(S). Neither is there any possibility to account
for the influence of context by arbitrarily patching “context terms” into the transfer function. Such
terms would represent the influence of more parts on the context, but not the influence of the context
on the parts. One might argue that context is a part, but the influence of context on the efficient
cause is to update the entire morphology of a process. As the next section indicates, it is not
reasonable to treat it as patching in another part.

7.2.4 WHY EFFICIENT CAUSE IS WHAT IT IS

If we ask where the efficient cause of the system in Figure 7.2 came from, the answer is that
the efficient causes of the subsystems are what they are, and by interacting in the morphology of
the system they give rise to the overall efficient cause. The morphology is externally entailed, and
typically no more is said about it. In the case of a man-made system, one might say that an engineer,
knowing the laws of nature, synthesizes a morphology, which, constrained by the laws of nature, must
lead to an efficient cause that is described by H(S). A mechanism need not be designed by the
Hand of Man in order to have an efficient cause. In the case of a naturally occurring mechanism,
such as a planetary orbit, a particular morphology is given (why or how it is given is irrelevant),
and that morphology, being governed by the Laws of Nature, produces an efficient cause. In either
case, whether entailed by the Hand of Man or by some invisible hand in nature, a crucial property
of mechanisms is that morphology, which gives rise to efficient cause, is externally entailed. In
that sense, mechanisms are open to efficient cause. 

Clearly, patching in more parts to represent context is unrepresentative of the influence of
context. However, might we not be able to represent the influence of context by using a mechanism
to entail another mechanism? In this case, the causal relations would be nested in a hierarchy. In
Figure 7.6, at the lower level of the hierarchy, two transformations occur. Material cause X(S) is
transformed into effect Y(S) through a process whose constraint is characterized by efficient cause
H(S). Material cause X(S) is transformed into effect Z(S) through a process whose constraint is
characterized by efficient cause J(S). However, there is also a metalevel transformation. Suppose
some process in the environment could reach inside H(S) and rearrange its morphology, converting
it to the morphology that corresponds to J(S). In that case, the process H(S), which serves as an
efficient cause on the lower level, also serves as a material cause on the metalevel. Likewise, the
process J(S), which serves as an efficient cause of a different process on the lower level, becomes
an effect of the metalevel process. The transformation of metamaterial causes H(S) into metaeffect
J(S) is constrained by a metaefficient cause.

As a crude example, suppose the transformation Y(S) = H(S) X(S) (illustrated in Figure 7.3),
where X(S) = V1, Y(S) = V2, and H(S) = S2LC/(S2LC + 1). Suppose the metatransformation
is performed by a circuit-rebuilding robot, and that the robot updates the morphology that underlies
H(S), by connecting an additional inductor L1 in parallel with C. The updated efficient cause is
represented by transfer function J(S) = (SL + S3LL1C)/(SL1 + SL + S3LL1C). In addition, the
robot that entails J(S) by updating H(S) is constrained by its own externally entailed efficient cause. 

At first glance, it appears that the nesting of Figure 7.6 solves the problem of context depen-
dency. However, it has merely moved the problem up a level. If we look at Figure 7.6 and ask what
efficiently caused the efficient cause, J(S), the answer is that there exists an efficient cause at a
metalevel. If we ask what caused the metaefficient cause, it is reasonable to suppose that there is
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yet another level of the hierarchy, and that the metaefficient cause is entailed at a meta–meta level.
Having seen this much of the pattern, a new problem immediately arises: how do we account for
context dependency but avoid an infinite regress of efficient causation in a finite physical process? 

It was to break that infinite regress that Rosen first discovered the conditions that enable the
existence of an entailment structure that is “closed to efficient cause” [25]. In Figure 7.7, B
represents the process of metabolism, in which material cause is taken from the environment and
integrated into the substrate of an organism. f is the efficient cause of B. Also note that Φ is the
efficient cause of f. Since the process is open to toxins as well as nutrients, f can be degraded by
the environmental insults to which it is exposed. To preserve the integrity of f, a repair process is
included; it has f as its effect, and Φ as its efficient cause. A hierarchy develops in which Φ
efficiently causes f, which efficiently causes B, a straightforward linear hierarchy. The problem is
that Φ is no less vulnerable to environmental insult than B and f. However, nothing fundamentally
precludes the possibility of B’s efficiently causing Φ, another linear hierarchy. Thus, when we look
at the whole relationship, Φ efficiently causes f efficiently causes B efficiently causes Φ. Rosen
avoids the infinite regress by implementing closure to efficient cause, leading to a hierarchical
closed loop.

This is a key concept for understanding all that follows. In processes of life and mind, the
distinguishing feature of Rosen complexity (equivalent to autopoiesis) [26] is a hierarchical closed
loop of causal entailment [27]. It is both a loop and a hierarchy of metaefficient causes. The key
limitation on the operation of a machine is that “there can be no closed path of efficient causation in
a mechanism” [28]. Many theorists, such as Bateson, recognize the necessity of circular causation
[29] and of hierarchical entailment [30] in complex processes. What Rosen showed is that both
circularity and hierarchy are necessary in the same process simultaneously. 

FIGURE 7.6 Entailment of efficient cause in mechanisms. In Aristotelian causation, material cause is trans-
formed into effect. In a linear system, causation results in the transformation of a material cause represented
by X(S) into an effect represented by Y(S). That transformation proceeds in a constrained manner; H(S)
completely describes that constrain in a linear system. The constraint here characterized by H(S) is the efficient
cause that entails the transformation. The constraining influence is modulated by properties characterized by
the parameters of the transfer function; that modulating influence is the formal cause. There is no final cause
in linear systems. If we can reach inside a linear system and rearrange the morphology of its parts, we can
change the characteristics of the efficient cause; this is represented as a change in the transfer function. That
can be seen as a transformation on a metalevel. In the entailment of an efficient cause, we can think of the
“efficient cause” (viewed at the low level) characterized by H(S) as the material cause at the metalevel.
Likewise, we can think of the updated “efficient cause” (viewed at the low level) characterized by J(S) as the
effect at the metalevel. As on the lower level, the transformation at the metalevel is constrained, and that
constraint is the metaefficient cause.

H(S) = Material cause

Efficient
cause

J(S) = Effect

X(S) H(S) Y(S) X(S) J(S) Z(S)
Material

Efficient Effect

Meta-Transformation

Transformations
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7.2.5 ENTAILMENT OF DOWNWARD CAUSATION

The hierarchical loop leads to the radical departure from traditional engineering systems. It still
has upward causation as a linear hierarchy does. In both graphs, in Figure 7.8, the efficient causes
of the behaviors of the parts at Φ are combined to yield an efficient cause of bigger subsystems at
f. However, when we close the loop in the right-hand graph, something else occurs. f is the efficient
cause of B, which is the efficient cause of Φ. In other words, by traversing the loop the long way
around, we get an effect similar to imposing an edge directed from f to Φ; f, the larger system,
exerts a causative influence on Φ, the smaller components. In other words, the loop affords
simultaneous upward (parts influencing the whole) and downward (whole influencing the parts)
causation.

FIGURE 7.7 Linear and circular hierarchies. Consider hierarchy as a concept of “containment.” If B is
contained in f, then B is lower in the hierarchy than f. Likewise, if f is contained in Φ, then f is lower in the
hierarchy than Φ. If Φ is contained in B, then Φ is lower in the hierarchy than B. In the closed-loop hierarchy,
if we start from Φ, we see that B is contained in f is contained in Φ; in other words, B is contained two layers
deep in Φ. However, if we start from B, we see that Φ is contained in B. Intuitively, it appears that the closed
loop is logically incoherent. However, Aczel’s proof of the existence and uniqueness of a solution to Ω = {Ω}
demonstrates that, counterintuitive as it might be, a circular hierarchy is logically coherent.

FIGURE 7.8 Simultaneous upward and downward causation. In a linear hierarchy of efficient causes, the
path of causation is unidirectional; if Φ efficiently causes f, which efficiently causes B, we see that B has no
influence on Φ. However, with a closed loop, despite the fact that we can only traverse the loop in one direction,
we can see both influences. Starting from Φ and moving the long way around, we see that Φ influences B.
However, starting from B, and moving the short way around, we see that B influences Φ. Thus, if traversing
the loop between two nodes, the long way around represents upward causation (the influence of the parts on
the whole), then traversing the loop between same two nodes the short way around represents downward
causation (the influence of the whole on the parts).
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Since they entail their own structure of upward and downward causation, physical processes
possessing a closed-loop hierarchy of efficient cause are called endogenous processes. They have
the quality of making themselves up as they go along. “Endogeny” is a conventionally used medical
term that describes the property of a system that grows from within itself, or makes itself up as it
goes along [31]. The same term is used for a similar concept in economics [32]. Some biologists
consider this property to be a defining feature of living systems. For example, Margulis and Sagan
[33] flatly state that a system is alive if and only if it is autopoietic. They identify autopoiesis as
the process of life making itself; they capture the essential point, although they simplify a much
richer concept [26]. 

The endogenous loop imparts a downward causation (or constraint of the whole on its compo-
nents) that acts as an internally generated final cause. Final cause imparts an identity on a process;
it determines its own goals acts in a manner to preserve itself. In other words, the closed-loop
hierarchy produces an integrated whole that has an identity that can be perturbed by, but remains
distinct from, its ambience. The endogenous causal entailment structure holds the process distinct
and intact.

Based on approximately a half century of experimental observation, Freeman says that this is
what brains do. Their endogenous nature requires a closed loop in their causal linkages. Freeman
calls this circular causality [34]. Based on his observations of brain behavior, Freeman says that
through neural activity, goals emerge in brains, and find expression in goal-seeking behavior [35].
He summarizes a lifetime of observation of brain activity, both in primitive animals and in humans,
with the pithy observation that “brains are hypothesis driven.” 

Abduction of hypotheses is not merely the hallmark of what brains do; it is the thing that brains
do that computers cannot do [36]. For a system to establish, update, and seek its own goals requires
that it be able to abstract semantic meaning from streams of symbols. The process by which it
does so is abduction, the abstraction of hypotheses from sensory data with far more effectiveness
than random guessing. For a hypothesis to be useful, the system must test it. Again the process
is semantic. Semantic behavior does not occur in mechanisms or algorithms. They have no internal
semantics, and any data they use are strictly syntactic [37]. In fact, the ability to abstract meaning
from a stream of signs and symbols is an externally observable effect that distinguishes endogenous
processes from mechanisms such as servos and algorithms. 

This concept of final cause differs from Aristotle’s notion of Final Cause in that it is internally
entailed and is updated due to perturbations of material and formal cause. In other words, final
cause does not impart strict finality more than efficient cause imparts strict efficiency. Nevertheless,
internally entailed final cause corresponds to Aristotelian Final Cause in some key particulars. First,
it does impart identity or wholeness to the process. More crucially, it induces goal-seeking behavior
for the purpose of preserving that identity; this corresponds to the teleological property of Aristo-
telian Final Cause. Also, it represents downward causation or the constraint of the whole on the
properties of the components.

7.3 DO HIERARCHICAL LOOPS OF ENTAILMENT MAKE SENSE?

The concept of a hierarchical loop of entailment is not especially new. It is one of the oldest
concepts in rational philosophy. It has been dismissed by philosophers both ancient and modern
as being logically incoherent. In set-theoretic logic, it is seen as leading to Russell’s Paradox, the
incoherent notion of the set of all the sets, a construct that provably both is and is not a member
of itself [38]. Objections to the idea that a system could be the cause of its own causes go back at
least as far as Aristotle. “And so, in so far as a thing is an organic unity, it cannot be acted on by
itself; for it is one and not two different things” [39]. However, the fallacy in both Russell’s and
Aristotle’s objections to endogenous entailment is based on the presupposition that systems are
syntactic things rather than semantic processes. 
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7.3.1 IMPREDICATIVES: ANSWERING RUSSELL’S PARADOX

Recall that one of the uses of the MR is that we can gain insights about a process by asking
questions about a congruent model of the process. Is it possible to construct an abstract model that
is congruent with an endogenous process? If so, and if the model is logically coherent, might we
not reasonably conclude that the process being modeled is also coherent? 

One solution to Russell’s Paradox is the Foundation Axiom of set theory, the notion that no
set may include itself as a member. This necessarily prohibits the notion of a set that contains all
the sets as members. One of the consequences of the Foundation Axiom is a ban on ambiguity.
“By formalizing the theory, the development of the theory can be reduced to form and rule. There
is no longer ambiguity about what constitutes a statement of the theory, or what constitutes proof
in the theory” [40].

However, ambiguity is not incoherence, and the Foundation Axiom is too restrictive a means
of assuring noncontradiction. Coherence can be obtained with the less-restrictive antifoundation
axiom (for the genuinely curious, the simplest form of the antifoundation axiom says “every tagged
graph has a unique decoration”). The detailed discussion of this definition is beyond the scope of
this chapter, but is readily accessible in Barwise and Etchemendy [41]. The more general hyperset
theory afforded by the antifoundation axiom is provably no less coherent than conventional set theory;
sets turn out to be a degenerate case of hypersets. 

In set-theoretic jargon, the prototypical hyperset, Ω, is the set that contains itself as a singleton.
More casually, Ω is that object, which solves Ω = {Ω}, where the brackets {} denote a set. This
definition is no more a conceptual stretch than the definition of i as that object which solves i 2 =
–1. The existence and uniqueness of Ω is proven; there is one and only one object that satisfies
Ω = {Ω} [42].

Ω = {Ω} is not a circular definition, or a claim that a thing merely is what it is. It is an
impredicative definition. The identity of Ω is established by the specific constraint on its relationship
with itself. The conventional meaning of the term “impredicative” is given by Kleene. “When a
set M and a particular object m are so defined that on the one hand m is a member of M, and on
the other hand, the definition of m depends on M, we say that the procedure (or the definition of
m, or the definition of M) is impredicative. Similarly, when a property P is possessed by an object
m whose definition depends on P (here M is the set of the objects, which possess the property P).
An impredicative definition is circular, at least on its face, as what is defined participates in its own
definition” [43].

Note that Kleene does not dismiss impredicativity because it is circular “on its face.” It has
depth below the face; the object on one level refers to its definition on the other, and there is a
specific constraint on how that reference operates across the two levels. The distinguishing feature
of an impredicative definition is the hierarchic closed-loop constraint. Kleene shows that the
constraint in the impredicative definition can be used to define the least upper bound on a set of
real numbers.

The easiest way to gain a sense of hypersets is to consider the graphical representation of sets
as in Figure 7.9. A set is a sort of abstract container that can define a hierarchy of containmnet.
1 is a number; it is not a set. {1} is the set whose only member is the number 1. Sets can be nested;
{{1}} is the set whose only member is the set whose only member is 1.

The hierarchy defined by set nesting is represented by a directed graph. A terminal node in the
graph represents a member of a set, and not usually a set itself. A nonterminal node represents a
set; directed edges (signifying the property, “is a member of”) from the node that represents the set
are connected to all the nodes that represent members of the set. The leftmost object in Figure 7.9
is the set containing three members; those members are the numbers 1 and 2 and the two-element
set whose members are the letters a and b. The same members may appear at different levels in
the hierarchy. The next leftmost object in Figure 7.9 is another set containing three members; those
members are the numbers 1 and 2 and the two-element set whose members are the numbers 1 and 2. 
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The two objects in the middle of Figure 7.9 are regular sets. Ω is a Greek letter; it is not a set.
{Ω} is the set whose only member is the letter Ω. {{Ω}} is the set whose only member is the set
whose only member is the letter Ω. If the constraint Ω = {Ω} is imposed on the two-node one-
edge graph forcing the two nodes in the regular set to become identical, the result is a hyperset.
The constraint need not be imposed only on nodes at adjacent levels. The constraint Ω = {{Ω}}
on the three-node two-edge graph forces the top and bottom nodes in the regular set to become
identical, turning the regular set into a hyperset. 

The graphical representation provides a convenient way to distinguish a set from a hyperset.
If the graph includes a set of edges that form a closed cycle, anywhere in the graph, then the graph
represents a hyperset. If the graph includes no set of edges that form a closed cycle, anywhere in
the graph, then the graph represents a regular set.

Although the first impulse of mathematicians was to attempt to define impredicative structures
out of existence, they could not do so. In fact, it did not even make sense for them to try;
impredicative structures are neither incoherent nor vacuous as was once feared [44]. For example,
the fundamental wavelet equation φ(t) = 2 Σnh0(n) φ(2t – n), a mathematical principle at the heart
of modern signal processing engineering has an inherently and necessarily impredicative definition
[45]. Remarkably, impredicative structures have been found to be indispensable to the description
of the foundations mathematics itself [43].

There is a temptation to confuse impredicativity with recursion. However, they are not the
same. Recursive definition of a class requires a specific instance of the class and a constraint upon
the relationship between members of the class. Arguably, it is a more constrained version of the
notion of impredicative definition. Impredicative definition of a class requires only a constraint
upon the relationship between members and the class as a whole. 

These definitions indicate a practical difference between recursion and impredicativity. Recur-
sion is characterized by a starting point and finite bottom. The defined bottom corresponds to the
initial conditions in a differential equation [46]. A recursive algorithm repeatedly calls lower-lever
versions of itself until it “hits bottom.” At the bottom of the recursion, it discovers the state vector
characterizing the initial conditions, each step upward through the constraint of the recursive
hierarchy entails a state transition. The fully evolved state vector is returned by the highest level

FIGURE 7.9 Sets and hypersets. In set notation, containment is represented by bracket notation or directed
graphs. In the leftmost figure, the set {a, b} is contained in the set {1,2,{a, b}}. In traditional set theory, the
same member might appear at multiple levels of the containment hierarchy, as shown in the first figure from
the left. We can see hierarchies of sets as nested containers; for example set {{Ω}} represents a container
that contains a container that contains Ω. In the rightmost figure, the structure of containment is folded into
a loop; Ω itself represents a container that contains a container that contains Ω. In hyperset theory, it is easily
proven that the structure Ω = {Ω} is identical to the rightmost structure; this is called the prototypical hyperset.
A set is a hyperset if and only if its graph contains a cycle; it includes at least one node such that if one
follows the directed edges, one eventually returns to the node.
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of the recursion to the function that called the recursion. In contrast, an impredicative process has
neither a “bottom-out” condition nor any state vector at all. The stability of the process depends
on the constraint on relationships between the dynamics at both the higher and the lower levels of
the process.

If used carelessly, impredicatives can lead to incoherence, but they are not inherently incoherent.
Thus, hyperset theory is a far less restrictive solution to Russell’s paradox than that proposed by
Russell. An axiomatic definition of “set” and a less restrictive axiomatic definition of a “proper
class” that may include the “class of all the sets” are sufficient to avoid both Russell’s paradox and
his infinite regress of “types” [47].

Is endogeny incoherent? Consider the relationship between endogenous causes in the diagram
in the leftmost graph of Figure 7.10. The causal entailments map to the inferential entailments of
the three-node hyperset Ω = {{{Ω}}}, as shown in the rightmost graph of Figure 7.10. Similarly, the
inferential entailments of the three-node hyperset map to the causal entailments. The entailment
structures are congruent, and an MR exists between the two processes. The hyperset is coherent,
and there is no reason to suppose that the corresponding structure of causal entailment should be
incoherent. 

7.3.2 FUNCTION: ANSWERING ARISTOTLE’S OBJECTION

Aristotle’s objection to a process entailing its own causes was based on the notion that the process
is a nonfractionable object. Although he saw that final cause imparts function, he did not take into
account the possibility that the process might serve as a context in which subprocesses might have
their own functions. Thus he did not consider the possibility that the functional components of a
process might perturb each other’s causal entailment structures, and consequently perturb the causal
entailment structure of the whole process. 

To appreciate the properties of a functional component, suppose we have a perceptibly heter-
ogeneous system [48]. One part has different features than other parts. If we leave the system alone,
it will exhibit some sort of behavior. If we remove or change a part, we get a change in behavior
of the overall system. Crucially, the change in behavior that we get is unlikely to be the effect that
we would predict by merely subtracting the behavior of the part from the overall behavior of the
unmodified system. The effect of changing or removing one part is to replace the original system
with a new system. The function of a part is the discrepancy in behaviors between the original
system with the full complement of parts, and the new system with one part removed.

FIGURE 7.10 Similarity of ontological structure of “closure to efficient cause” to the epistemological struc-
ture of impredicativity. The Rosen structure of efficient cause leads to the left-hand figure. The efficient cause
of metabolism (f) is entailed by (or contained within) the efficient cause of the repair process (Φ), which is
entailed by (or contained within) the efficient cause of the repair process, the replication process (B), which
is entailed by (or contained within) the efficient cause, the metabolism process (f). In the hyperset Ω =
{{{Ω}}}, exactly the same closed-loop hierarchy of containment is seen.
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These parts must not be confused with the directly summable parts of a reducible system.
Rosen avoids this confusion by offering a new term for a part that embodies function. He calls it
a functional component. In this terminology, the difference between the two systems defines the
component, and the difference between the two behaviors defines the function. In a complex system,
a component with a function is the unit of organization.

A functional component is context dependent. It has inputs, both from the larger system of
which it is a component and from the environment of the larger system. It also has outputs, both
to the larger system and to the environment. If the environment, A, changes, then the function of
the component, B, changes. A can typically be described by a family of mappings that carries a
set (the domain X, where x ∈X) to another set (the codomain Y, where y ∈Y), such that, y = a(x),
or more formally, A: X → Y. B can typically be described by another family of mappings that carries
a set (the domain U, where u ∈U) to another set (the codomain V, where v ∈V), such that, v =
b(u), or more formally, B: U → V.

The functionality, F, of the functional component can be described as a mapping that maps a
domain set of mappings (A, where mapping a ∈A) to a range set of mappings (B, where mapping
b ∈B), such that b = f(a), or F: A → B. The concept of a mapping that maps one set of maps to
another set of maps is not unfamiliar to engineers. This is precisely what happens with a symbolic
Laplace Transform. 

A functional component differs from the idealized particle of Newtonian physics. The particle’s
identity (defined in terms of parameters such as mass) is unaffected by context. A particle does not
acquire new properties by being associated with other particles. A functional component’s context
dependency requires that its identity be tied to its function in a larger system. Although it is a thing
in itself, it both acquires and imparts new properties as a consequence of association with other
functional components. Since the functional component provides a means of perturbing the entail-
ment structure of its context, it is not the case that a process “is one and not two different things.”
It is a process with a function that can be perturbed by the operation of its functional components. 

7.4 WHY ORGANISMS ARE NOT MACHINES

From the time of Descartes to the present day, it has been supposed that an organism is nothing
but a particularly complicated machine. Csete and Doyle recount the modern version of the concept,
observing that an organism is nothing but a mechanism with a hierarchy of modules, and feedback
at various levels of the hierarchy [49]. They conclude with the following sage advice. “Biologists
and engineers now have enough examples of complex systems that they can close the loop and
eliminate specious theories. We should compare notes.” 

Perhaps engineers and mathematical biologists should compare notes. If they were to do so,
biology would have much more to say to engineering than engineering would have to say to biology
about new concepts. Engineering is rooted in the physical tradition of “upward causation,” and
denies the influence of the whole on the properties of the parts. For at least the past 60 years, it
has been realized that this picture is incomplete. Speaking of the living process, Schrödinger says,
“We must be prepared to find a new type of physical law prevailing in it, or are we to term it a
non-physical, not to say a super-physical law?” [50]. 

The concept of downward causation resulting from a hierarchical closed loop of efficient cause
is just such a superphysical concept. Traditional bottom–up causation is the degenerate case that
arises when the hierarchical loop of causation is very large, the influence of the whole upon the
parts is weak, and a section of the hierarchical closed loop can be reasonably approximated as a
linear hierarchy. However, this is the degenerate case. In all but the most trivial biological processes,
the influence of the closure of the loop of efficient cause cannot be ignored. Both the character of
the loop and the character of modularity in biological processes are profoundly different from those
in traditional engineering systems. 
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7.4.1 BOTH THE LOOP AND THE HIERARCHY ARE CRUCIAL

To appreciate the difference between endogeny and feedback, consider the two processes shown
in Figure 7.11. The feedback servomechanism has no context dependency except the external
entailment of its dynamical law of behavior (or transfer function if it is linear). That entailment is
typically ignored; engineers typically assume that the transfer function is what it is without asking
why. The input or material cause is not part of the context; it is part of the process. The input,
transformation, and output are considered three parts of the process, isolated from the rest of the
world. There is a self-referential loop, but it is nonhierarchical, operating strictly at the level of
material cause.

The feedback servomechanism is isomorphic to recursion. The essentially nonhierarchical
character of the recursion is seen in the fact that any program that calls the recursive algorithm
will both enter and exit the recursive call at exactly the same nesting level. An essential point is
that any such process is computable; it can be fully described by a recursive algorithm. 

An organism, or a process entailed by an endogenous loop, open to material cause [53]. In
other words, the input at the level of material cause is part of the context, not part of the process.
In the process of metabolism, such inputs are integrated into the physical substrate of the organism.
Since one effect of material cause is an update of the morphology of the subprocesses, updating
the morphology incidentally updates the efficient cause. The updating of efficient cause is con-
strained by an efficient cause at a higher level, and every efficient cause in the process is the effect
of another efficient cause within the process. In other words, the process is closed to efficient cause.
The closed loop is at the level of efficient cause. Since each efficient cause serves as the context
of the efficient cause that it entails, the self-referential loop is inherently hierarchical. This is the
crucial difference between a feedback servomechanism and an endogenous process. The former is
a flat loop of material cause, and the latter is a hierarchical loop of efficient cause, in which each
efficient cause is contained within another efficient cause.

The endogenous loop is not isomorphic to recursion. Instead, it is homomorphic to impredica-
tivity. The hierarchical character of the impredicativity has the effect that any program containing
such a structure will deadlock, and is forbidden in computation [52]. An essential point is that any
such process is incomputable. Except in the rare case that a bound on truncation error can be
derived from an impredicative definition (as is the case for the Fundamental Wavelet Equation),
there is no recursive algorithm that characterizes impredicativity. 

If traversing the loop of efficient cause in one direction follows the entailment of efficient cause
in the bottom–up sense, then traversing the same loop in the other direction follows the entailment
of efficient cause in the top-down sense. This is the same as the influence of final cause, the influence
of the whole upon the properties of the components. This imparts to the process self-determined
identity, and self-determined goal seeking behavior to preserve that identity. There is no top–down
causal entailment in a servomechanism. 

In both an organism and a mechanism, the behavior of the process can be changed by modulating
the formal causes. Recall that formal cause is a constraint upon efficient cause that results in the
particular form of the outcome. In the case of a mechanism, this corresponds to properties of
components characterized as parameter values. In the case of organisms, the genome is one of the
formal causes [24]. In both the organism and the mechanism, both the environment and the internal
working of the process can modulate the formal cause. 

FIGURE 7.11 Two fundamentally different kinds of closure. The loop in a servomechanism is a nonhierarchic
loop of material cause. The loop in Rosen complexity is a hierarchic loop of efficient cause.
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When viewed from the perspective of causal entailment, the closed loop of endogeny and the
feedback loop of a servomechanism are not merely different, they are practically orthogonal to
each other. The servo is closed to material cause, open to efficient cause, and presumed to be
unaffected by final cause. The feedback loop is nonhierarchical, operating at the level of material
cause, and is isomorphic to recursion. It is computable. The endogenous loop is open to material
cause, closed to efficient cause, and both entails and is entailed by its own final cause. The
endogenous loop is hierarchical, operating at the level of efficient cause, and is homomorphic to
impredicativity; thus it is incomputable. 

7.4.2 AMBIGUITY IS INCOMPUTABLE 

To appreciate that impredicativity is incomputable, it suffices to realize that ambiguity is absolutely
forbidden to computation [53]. This is the reason that programs with hierarchical loops deadlock.
They present ambiguous information to the next step in the algorithm, and the algorithm halts,
waiting for disambiguating information that never arrives.

Both endogenous natural processes and impredicative abstractions have this key property not
shared by the mechanisms commonly studied by traditional science or their formalistic analogs;
they have ambiguous internal semantics. Speaking of brains Von Neumann says, “There exist here
different logical structures from the ones we are ordinarily used to in logics and mathematics” [54].
In trying to find a starting point for his development, Von Neumann realized that he was being
arbitrary. “By axiomatizing automata in this manner, one has thrown half the problem out the
window, and it may be the more important half” [55].

When Von Neumann hoped he could throw semantics “out the window” but feared he could
not, it is clear that he had in mind something other than the common notion that semantics is a
simple this-for-that substitution of one sign for another. It is also clear that he was not referring to
a property that applies only to natural languages. Instead of thinking of semantic meaning as
substitution of signs, it is more instructive to think of the meaning of a sign as a relationship
between a sign and proposition where the entailment of the proposition depends on the context-
dependent relationship between a sign and its referent. 

To appreciate how the relationship between a sign and its referent entails a proposition, consider
a logical structure L, consisting of a set of sentences {this, that1, …, thatn}. The propositional
demonstratives, T = {this, thatj| 1 ≤ j ≤ n}, refer to something in their situation, and are the domain
of a mapping, c: T → Q. Propositions, Q = {p, qj| 1 ≤ j ≤ n}, are the codomain of the mapping.
Given a situation, s, one can use a sentence ϕ to express a proposition p about s; within this
structure, the propositional demonstrative this also refers to p. The context, cs, of sentence ϕ is the
pair cs = <s,c> consisting of situation, s, and mapping, c [56].

A statement Φ is a pairing of context, cs, with sentence, ϕ. p = Exp(Φ) is a proposition expressed
by Φ. Val(ϕ) is a mapping from sentences to propositions defined by a particular logical structure
L. The proposition Exp(Φ) is obtained from Val(ϕ). There is a uniqueness theorem that says that
for any sentence ϕ in context, cs, there exists a unique proposition, p = Exp(Φ) = Exp(ϕ, cs,). Exp(Φ)
is true if situation s, determined by the context, is of a particular type determined by the descriptive
conventions of L, and false otherwise. (Note: The actual descriptive conventions, Val(ϕ), can be
set out in hyperset-theoretic notation. Barwise and Etchemendy show an example [56]). 

Several fairly remarkable consequences flow from these ideas. They provide a coherent concept
of falsehood. The Russellian concept of truth is that true propositions correspond to facts in reality.
However, there are no false facts in reality that correspond to false propositions. In Austinian logic,
used by Barwise and Etchemendy to ground this concept of semantics, ontological reality is what
it is, and the values of true and false are strictly the properties of epistemological propositions
commenting on that reality. More relevant to this discussion, the proposition, p, that corresponds
to the sentence, ϕ, can, and usually does, include a hierarchic self-reference. Where p = Exp(ϕ(this,
that1, …, thatn), <s,c>), c includes the mapping of this to p.
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The logical structure p(ϕ) = Exp(ϕ, cs,), which identifies the meaning of sentence ϕ, is inherently
impredicative. There is no way of isolating ϕ on one side of the “=” sign. In other words, if the
semantic meaning of a sign, ϕ, is a proposition, p, then the sign, ϕ, includes “internal semantics”
[57]. The sign includes an implication that refers to its own internal structure; the structure means
something to itself.

It is crucial to recognize that L is not a natural language. It is a logical structure that can serve
as a model of utterances in a natural language. This means that there is no reason to suppose that
there is a single ϕ ∈L that corresponds to an utterance in a natural language. In fact, Korzybski
notes that language semantics may require limitlessly many different instances equivalent to ϕ ∈L
to account for all the propositions implied by a natural language utterance. Terms such as ‘yes,’
‘no,’ ‘true,’ ‘false,’ ‘fact,’ ‘reality,’ ‘cause,’ ‘effect,’ ‘agreement,’ ‘disagreement,’ ‘proposition,’
‘number,’ ‘relation,’ ‘order,’ ‘structure,’ ‘abstraction,’ ‘characteristic,’ ‘love,’ ‘hate,’ ‘doubt,’ etc. are
such that if they can be applied to a statement, they can also be applied to a statement about the
first statement, and, so, ultimately, to all statements, no matter what their order of abstraction is.
Terms of such a character I call multiordinal terms. The main characteristic of these terms consists
of the fact that on different levels of orders of abstractions they may have different meanings, with
the result that they have no general meaning; for their meanings are determined solely by the given
context, which establishes different orders of abstractions” [58].

What is clear from Korzybski’s observation is that if meaning is affected by context and if the
context can change without limit, then meaning can change without limit. Ambiguity of meaning
is inherent, and not an anomaly or error. The fact that a single expression might have many (even
limitlessly many) different meanings, but nevertheless be properly understood in a specific context
is what Barwise and Perry call “another aspect of the efficiency of language” [59].

Since ambiguity is inherent, there is no general procedure for disambiguating expressions or
concepts. Perhaps the most compelling example of inherent ambiguity arises in logic itself; the concept
of falsehood is inherently ambiguous [60]. A proposition is false if it is a negation or contains an
inherent internal contradiction. It is also false if it is a denial, being internally coherent, but
contradicting a true proposition. This does not mean that logic should have three truth values —
true, negated, and denied; in all but a few pathological instances, false propositions are simulta-
neously negations and denials. However, it does mean that to avoid confusion, the logician must
be aware of the possibility of the pathological instances, and determine from the situation which
sort of falsehood is implied.

The fact that the situation constrains the meaning is crucial to this concept of semantics. In
fact, it is these constraints that enable utterances to convey information about situations [61]. The
situation determines how restrictive the constraints are. In the example given by Korzybski, there
is a countable infinitude of meanings. In the more severely constrained case of falsehood in logic,
there are only two meanings. In the even more severely constrained case of formalism, only one
meaning is permitted. Significantly, it is not the case that ambiguity is a pathological instance of
confusion arising from the careless use of language. Instead, it is the case that nonambiguity is an
unnaturally restrictive instance of limiting a sign to a single meaning, so that it might conveniently
be represented by an algorithm [53].

As Barwise and Perry note, these constraints are not limited to natural languages, but rather
“the same basic pattern applies to all manner of meaningful items, in particular, to mental states”
[61]. In other words, if a process can be put into an MR with an Austinian logical structure L, then
it has semantic properties, and those properties are defined by the constraints on the relationship
between the sign and its referent.

As Bateson observes, semantic constraints have the property of nonlocality. “…the universe is
informed by the message; and the ‘form’ of which we are speaking is not in the message nor is it
in the referent. It is a correspondence between message and referent” [62]. There is no place where
the correspondence or the constraints that govern it can be said to be located. They are everywhere,
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but not isolatable anywhere. “This matter of the localization of information has bedeviled commu-
nication theory and especially neurophysiology for many years” [62]. 

Neither nonlocality nor other properties of semantic constraint are limited to natural languages.
L is not a natural language. It is a logical structure with its own internal semantic properties,
including internal ambiguity. Assuming that we can discover entailments that enable us to map
between the entailment structure in L, and the entailment structure of some other process, we can
construct an MR between that process and L, and we can study the semantic properties of the
process by asking questions about the semantic properties of model L [63].

Natural language is merely one of the processes that can be put in an MR with L [65]. If we
investigate natural languages by modeling them with L, and then ask questions about L, quite often
we do find an unsurprising result. It can happen that for one of the propositions that correspond
to a comment about a sign in the natural language, there exists another sign that might be used in
place of the first. In other words, “this-for-that” substitution (often mistaken for the entire scope
of semantics) is a degenerate instance of the more general concept of semantics that arises from
Austinian logic that the meaning of a sign is the entailment of a proposition implied by the sign,
where the constraints in the inferential entailment structure depend on the context of the sign and
its referent.

Because the context can change without limit, the meaning of a sign implied by its context can
change without limit, and the task of disambiguation of a sign becomes a fools’ errand. It is
remarkable that logicians have tried to define impredicatives out of existence because they have
inherent internal ambiguities. Those inherent ambiguities are neither a defect nor a weakness; they
are a strength. As Barwise and his collaborators have shown, impredicatives such as hyperset
theoretic constructs are an abstract means for representing the ambiguities that arise in endogenous
natural processes. 

7.4.3 CAN FUNCTION IN CONTEXT BE CHARACTERIZED BY DIFFERENTIAL EQUATIONS?

Despite the ambiguity and consequent incomputability of endogenous and impredicative entailment
structures, the question often arises as to whether or not they can be represented by systems of
differential equations. In particular, the question is whether or not they can be represented by a
system of differential equations whose solution is a map of the form f: Rn → Rm, a function that
carries an n-dimensional vector of irrational numbers to an m-dimensional vector of irrational
numbers. With rare exceptions, this strategy will fail. 

To appreciate why, consider how context is taken into account. A differential equation is a map
of the form d:g → h, where g and h are representations of rates of change that impose a constraint
on a process that is satisfied by another map of the form f: Rn → Rm. One cannot simply add terms
to d to account for the influence of context, since the terms represent the influence of parts rather
than encompassing context. To account for the influence context on d, one would require an
encompassing map e: j → k, for which d is the solution. Once again, this is the first step down the
road to infinite regress. 

One might hope that the infinite regress could be sidestepped by the same sort of hierarchical
loop as has already been discussed. In other words, suppose the process is represented by a hierarchy
of maps, d: g → h solves e: j → k solves x: y → z … solves d: g → h, where each letter represents
a category theoretic construct. Such a system of maps can probably be constructed. Indeed, this is
precisely the sort of thing that situation semantics does.

The problem is that none of the maps are of the form f: Rn → Rm. Such a map is not a constraint
that is satisfied by another map. Numbers are constructible as Von Neumann ordinals from opera-
tions in set theory [65]. However, there is no means of constructing a hyperset by performing
operations on regular sets. There are hyperset theoretic constructs that are orthogonal to number-
based constructs, just as irrational numbers are orthogonal to imaginary numbers [66]. In other

DK3072_book.fm  Page 157  Thursday, October 19, 2006  6:21 PM



158 Systems Biology: Principles, Methods, and Concepts

words, there are hyperset theoretic constructs that are independent of the concept of number. Thus,
a category theoretic generalization of differential equations might be represented by a hierarchy of
maps, d: g → h solves e: j → k solves x: y → z … solves d: g → h, and this might be represented
as a loop of hyperset theoretic constructs, but nowhere in the loop would a solution fall out as lists
of numbers. 

7.5 WHY NOT REDUCTIONISM?

Despite the fact that we are dealing with processes whose entailment structures do not commute
with the entailment structures that govern the relationships between lists of numbers, the question
persists. Why do we not write a computer program to emulate the foregoing and do away with all
the seeming hand waving? As already noted, there is no algorithm capable of implementing the
hierarchical closed-loop entailment structure that is necessary to abduct the novel information
necessary to deal with data that have context-dependent ambiguities. Ignoring the detail that
ambiguity is forbidden to computing and that genuine ambiguity deadlocks an algorithm, thousands
of brilliant minds have spent decades searching for an algorithm that exhibits “intelligent” behavior.
In this section, we consider some of the reasons why that search has failed. 

7.5.1 WHAT IS REDUCTIONISM?

“When you measure what you are speaking about and express it in numbers, you know something
about it, but when you cannot express it in numbers your knowledge about it is of a meager and
unsatisfactory kind.” — Lord Kelvin [67]. 

The above pearl of wisdom commonly appears on the opening page of scientific textbooks. It
is fair to ask, why should we depart from it? After all, has not reductionism literally delivered the
goods for 400 years? If that were not enough, has not the revolution in digital computing dramat-
ically accelerated the rate at which those goods are being delivered? Why does the strategy discussed
in this chapter take such a radical departure from a path that has proven to be so fruitful? 

Before we consider the reasons why, it might be helpful to be clear just what it is that we are
departing from. Terms like algorithmic and reductionistic are tossed around rather more casually
by their users than is justified by the precision of thinking that they are supposed to imply. Just
what was Lord Kelvin going on about, and why did he think it was so important? 

For example, “algorithmic” has a precise meaning in computer science. It does not merely
mean methodical. It is a process with five attributes [53]. It terminates after a finite number of
steps. Most crucially, each step is unambiguously defined. It has zero or more input data. It has
one or more output data. An algorithm must be effective.

That last attribute leads to the most confusion. What is it about a process that causes us to
characterize it as effective? Whatever it is, it must be unambiguous. Otherwise it would contradict
the second attribute, the ban on ambiguity. Church proposed “we define the notion … of an
effectively calculable function of positive integers by identifying it with the notion of a recursive
function of positive integers (or of a lambda-definable function of positive integers)” [68,69]. Church
had equated effectiveness with lambda-definability, but discovered that this was equivalent to the
less awkward concept of the Turing machine. Hence, he defined effective as computable by a Turing
machine, noting that “computability by a Turing machine … has the advantage of making the
identification with effectiveness in the ordinary (not explicitly defined) sense evident immediately”
[70].

This definition of computational effectiveness as being calculable by a Turing machine was
followed by the observation that nobody seems to be able to produce a calculable function that is
not calculable by a Turing machine. There is hot debate in the computer science community as to
whether or not the Busy Beaver problem [71] constitutes a counter-example to this observation. In
any case, the Church–Turing thesis turns out to be a comment on effectiveness as it relates to
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calculable functions. “Every effectively calculable function that has been investigated in this respect
has turned out to be computable by Turing machine” [69]. 

There is a variant on the Church–Turing thesis, which makes a rather grand claim about
reductionism. The strong Church–Turing thesis (evidently never explicitly endorsed, nor rejected,
by either Church or Turing) asserts that every physical process is effective and must be completely
describable by a Turing machine. “I can now state the physical version of the Church–Turing
principle: ‘Every finitely realizable physical system can be perfectly simulated by a universal model
computing machine operating by finite means’.” This formulation is both better defined and more
physical than Turing’s own way of expressing it [72]. The claim is that every realizable physical
system includes brains, and it must follow that intelligence can be captured in an algorithm. 

This is a modern restatement of a concept that has dominated science for the past 400 years.
Reductionism encompasses numbers and other systems that can be put in correspondence with
numbers [73]. Suppose that x is a natural system or referent, and P(x) is a proposition that asserts
that some property of x is true. Rosen argues that an essential attribute of reductionism is that any
such proposition can be algorithmically constructed by “ANDing” Pi(x) where i ∈{1, …, N}, N is
a natural number, and there are N true subproperties of x that are described by N independent
propositions. Since infinity is not a number, this description limits a reducible system to a finite
list of properties. This algorithm constitutes a list of conditions, each necessary, and all sufficient
to establish the truth of P(x). In Rosen’s words, “… every property P(x) of x is of this character.” 

Another essential attribute of reductionism is the context independence of the parts of a system
[74]. Suppose that referent, x, can be fractioned into parts, xj. The listable subproperties of xj,
described by Pk(xj), are independent of the fractioning process or any other context.
P(x) = ∧j,k Pk(xj) j,k ∈N. This algorithm says that the largest property of the system can be found
by ANDing all the subproperties of all the parts, and that doing so produces no information
whatsoever about the context. In Rosen’s words, “It is precisely this context independence that
renders reductionism an entirely syntactic exercise, that gives it its algorithmic character, and
embodies it in the kinds of lists and programs I described earlier.” 

These presumed attributes have some consequences [75]. Every proposition describing a prop-
erty P(x) has an algorithm for assessing its truth. Any natural system, x, can be constructed, given
enough parts xj, and an algorithm for constructing x from xj. The process of analyzing a system x
into its parts xj is exactly reversible to a process of synthesizing x from its parts xj. Correspondingly,
the process of analyzing P(x) into its subproperties and synthesizing it from its subproperties are
reversible and algorithmic. If, as is asserted by its advocates, strict reductionism affords a complete
description of all physically realizable processes, then as Rosen says, “everything is computable,”
including cognitive function. 

In strict reductionism, “computable,” “algorithmic,” and “reducible” are three different terms
describing the same kind of process. These processes are context independent. Their behavior is
the direct sum of the behaviors of their parts. All elements of behaviors are localizable. Their causal
entailments are strictly separable. Any closed loops of causality are strictly limited to material
cause. At any instant in time, the entire state of the process can be characterized by a structure of
irrational numbers (sometimes called a state vector). The entire biography of the process is sub-
sumed in the evolution of values within that structure. As Lord Kelvin says, the knowledge is in
the numbers; to raise distinction between the model and the process is to divert attention from the
numbers or to obscure the thing that matters most to a true understanding. 

7.5.2 WHERE DOES REDUCTIONISM FALL SHORT?

Recall Deutsch’s claim: “I can now state the physical version of the Church–Turing principle:
‘Every finitely realizable physical system can be perfectly simulated by a universal model computing
machine operating by finite means’. This formulation is both better defined and more physical than
Turing’s own way of expressing it.” Remarkably, Deutsch admits that this is not what Turing said.
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Also, he characterizes his statement as a definition, and not as either a hypothesis or a proven
conclusion.

However, is a “more physical” rendition of the Church–Turing thesis justified? The claim of
the strong Church–Turing thesis seems to arise from the failure to notice a hidden ambiguity in
the term effective. Church and Turing described a process as effective if and only if it was equivalent
to a Turing machine. In the context of the five properties of an algorithm, this is the one and only
admissible meaning of the term “effective.” In physical ontology, effective has quite a different
meaning; effectiveness is the property of producing events in reality.

If one ignores the ambiguity and treats these quite distinctly different meanings as if they were
identical, then the syllogism follows quite naturally. All physical processes are effective. All effective
processes are computable. Therefore all physical processes are computable. However, the conclu-
sion remains unproved because effective has two different meanings in the two different premises.

The concept that reductionism explains everything predates by centuries the claims of Church,
Turing, and those who retell Church’s and Turing’s story in their own way. The premises behind
the conclusion that “reductionism explains everything” is that “reductionism explains everything
in physics,” the whole world is made up of physical particles governed by the laws of physics, and
the behavior of the whole world is the direct sum of the behaviors of its parts. The problem is that
none of these premises are provably true.

Contemporary reductionistic theories of physics do not explain all physical processes, even
some seemingly mechanistic ones. For example, there is a law for describing the rate of decay of
a large collection of radioactive nuclei. However, there is no law for identifying which nucleus will
disintegrate next [76].

Furthermore, physics ignores endogenous causation. Despite the fact that discussion of endog-
enous causation and impredicative logic were typically disallowed in serious scientific discussion
at the time, Schrödinger, one of the preeminent physicists of the last century, recognized 60 years
ago that living processes must be entailed by something like endogeny. “To put it briefly, we witness
the event that existing order displays the power of maintaining itself and of producing orderly
events. That sounds plausible enough, though in finding it plausible we, no doubt, draw on
experience concerning social organization and other events that involve the activity of organisms.
And so it might seem that something like a vicious circle is implied” [77].

This led Schrödinger to an astounding conclusion. Reductionistic physics is inadequate to
account for the properties of organisms. Speaking of living processes he says “we must be prepared
to find a new type of physical law prevailing in it. Or are we to term it a non-physical, not to say
a super-physical, law?” [50]. He was not referring to a mystical vitalistic Cartesian “ghost in the
machine.” He said that to understand living processes, there remains a larger physics to be discov-
ered, and that larger physics is “something like a vicious circle.” 

The currently known laws of physics ignore endogenous causation, and, consequently, it is not
valid to claim that a world that abounds in endogenous processes is fully governed by the currently
known laws of physics. As Schrödinger shows, the premise that the whole world is the direct sum
of the behaviors of its parts is an assumption that appears to ignore visible facts. Thus, the notion
that a system is reducible to its parts is not proven; rather it is simply the converse of the previous
assumption. The claim that the behavior of the whole world is the direct sum of the behaviors of
its parts is an instance of the logical fallacy of “begging the question,” considering that a proposition
is proved because it is assumed. 

7.5.3 THE MEASUREMENT PROBLEM

In his assertion that knowledge is expressed in numbers, Lord Kelvin mentions, but then quickly
passes by, the notion that the numbers arise from a process of measurement. In fact, measurement
is the foundation of physics. However, that foundation has a rather serious crack. About a century
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ago, it was realized that there was no practical way of validating what is measured, and this as yet
unsolved “measurement problem” continues to perplex physicists even to the present day. 

This is not a mere technicality of quantum mechanics. Irrespective of scale, the measurement
problem is the question of why we should believe any measurement that we take. Rosen discusses
the measurement problem in some detail. “Suppose we want to determine whether a predicate or
proposition P(x) is true about a given object, x. For instance, suppose we want to determine whether
a particular molecule x has a certain active site on it. Or whether a particular pattern x manifests
a certain feature. These seem to be nice, objective questions, and we would expect them to have
nice, objective, cognitive answers. Basically these are measurement problems” [78].

He then notes that we might test the truth of P(x) by measuring object x with a meter or feature-
detector, y, an object different from the object x that we are trying to measure. However, can we
believe the reading, Q(y) produced by the meter or feature-detector, y? One way to test Q(y) is to
use another measuring device z (Rosen calls it a feature-detector detector) to measure y. The problem
is why should we believe R(z), the reading produced by the feature-detector detector? He then
makes the point that this strategy is doomed because in order to work it would require an infinite
regress of feature-detector-detector … detectors.

This is the classical measurement problem. Attempting to validate the validator starts down a
path of an infinite regress of independent readings and validations. This is more than a philosophical
puzzle. Since many measurements are made very near the technical limits of measurability, the
question of whether or not the measurements are believable is crucially important.

We can truncate the regress at Q(y), if we have some other reason for believing Q(y) to be true.
If we have a model of meter y, built from independent knowledge, we can use this model to infer
the truth of Q(y) without recourse to measurement. The problem with this strategy is where did
the independent knowledge come from, to construct the model of the meter if no recourse was
made to measurement?

Rosen offers an alternative strategy. He says we can use an impredicative structure to validate
the measurement. “The only other possibility is to fold this infinite regress back on itself, i.e., to
create an impredicativity” [79]. His strategy works as follows. We want to understand process x.
We make a measurement with feature detector y that produces the proposition P(x). We want to
validate feature detector y. We make a measurement with feature-detector detector z that produces
the proposition Q(y). Suppose we break the infinite regress by letting the original process x serve
the role of the feature-detector detector z (i.e., force z = x). In other words, he claims that we can
validate R(z) because within the impredicative structure (where z = x), we can validate R(x), Q(y),
and P(x) simultaneously.

Admittedly, Rosen does not describe the specific impredicative structure that works the wonder
of validating R(x), Q(y), and P(x) simultaneously. He implies that the structure is discoverable for
specific instances of measurement. In other words, he points to a strategy for solving the measure-
ment problem, but does not provide the solution. 

An impredicative solution to the measurement problem is needed, because the measurement
process is inherently impredicative, and consequently, cannot be described by reductionism. “The
impredicativity that we have described, which is the only alternative to the unacceptable infinite
regress, may be described in the following deceptively syntactic looking form: x ↔ y (7.1). This
is essentially the modeling diagram (Figure 7.1) in which the arrows represent what I call encodings
and decodings of propositions about x into those of y, and which satisfy a property of commutativity
(i.e., the path x → y → x in the diagram is here the identity mapping). But Equation 7.1 represents
an impredicativity and, hence, from the preceding discussion, it follows that both x and y themselves
possess other models that are nonformalizable or incomputable. Stated otherwise, Equation 7.1
actually represents a multitude of inherently semantic interpretations; it has meanings that cannot
be recaptured from it by purely syntactic means — by lists of other symbols and rules for
manipulating them” [80].
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Far from explaining everything in physics, we see that reductionism fails to explain the
measurement process at the very foundation of physics. It is possible that a hyperset-theoretic
model of valid measurement may be discovered. In fact, the necessity to do so is a significant open
research question. 

7.5.4 BRAIN PHYSIOLOGY

If reductionism fails to explain the measurement process at the very foundation of physics, would
it be a great surprise to find that it fails even more spectacularly at explaining the observed processes
of life and mind? The classic reductionistic theory of mental processing was Skinner’s behaviorism.
Chomsky punctured the idea by showing that behaviorism ignores the influence of the internal structure
and organization of an organism on its own behavior [81].

As an alternative to the reflex arc structures of behaviorism, Miller, Galanter, and Pribram
suggested that the mind might use an internal model of the world to execute plans was a better
explanation of hierarchically structured behavior [82]. They recognized that most human behavior
operates on different hierarchical levels simultaneously.

As Freeman and others have observed, brains do indeed construct internal models. However
Miller, Galanter, and Pribram formulated their Test Operate Test Exit (TOTE) model as one level
of a recursive algorithm that they supposed would describe the process. They failed to notice that
a recursive algorithm executes one level at a time in sequence (and must, because each level waits
for data from the next), and does not correspond to mental modeling, which they themselves note
operates on different hierarchical levels simultaneously.

Had they posited an impredicative model instead of an algorithmic model, some fairly dramatic
discoveries about mental processing might have been made decades earlier than they actually were.
We form hypotheses by abduction, and test them by emotion. The “test” is the question of whether
or not the knowledge feels right; we update our models if it feels wrong. When the knowledge
feels right, we use it to proceed toward some internally defined goal or final cause, something an
algorithm is incapable of forming. We perceive the result of the process as a comforting and
satisfying feeling of knowing [83].

It is also instructive to consider what happens when the process fails. In autism, the sensory
substratum is present and produces the right markers (chemical and electrical signals), though due
to a neurological malfunction, the representation systems do not construct sensible percepts from
them. As a result, the typical autistic child lives a life of unremitting terror [84].

With proper medication and training, autistic people can and do learn how to construct models
most appropriate for their situation, exclusively “thinking in pictures” [85]. Verbal language is a
pure abstraction into which high-functioning autistic people have learned to translate their visual
concepts. This may be due to the fact that visual representation contains no emotions, smells, tastes,
or sounds.

The highly developed visual representation systems of autistics overstimulate the neurological
“fight or flight” response, while auditory and kinesthetic mental models are easily overwhelmed
by sounds, touches, tastes, and smells. As a result, the daily life of the autistic adult is only slightly
less frightening than that of the autistic child [86]. It is not surprising that if the abstraction of
sensations into “knowing” feels right, then a meaningless jumble of sensations must feel terribly
wrong. 

Minds operate on different hierarchical levels simultaneously to abduct semantic emotions from
sensory data. Where the meaning and emotion reside is nonlocal; it is in the relationship between
the hierarchical levels of the mental model. The fact that one cannot point to a specific neuron or
even a vector of neural weights, and say that “an emotion or meaning resides here” does not make
them any less real. They have all the characteristics of impredicative processes. 

The fact that minds operate nonlocally is no surprise given that brains, the substrate with which
minds are inseparably entangled, are also largely nonlocal in their operation. Based on extensive
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observational and experimental research, Bach-y-Rita has found that “nonsynaptic diffusion neuro-
transmission (NDN) is a major mechanism of information transmission in the brain and spinal
cord. It includes the diffusion through the extracellular fluid of neurotransmitters released at points
that may be remote from the target cells, with the resulting activation of extrasynaptic receptors as
well as intrasynaptic receptors reached by diffusion into the synaptic cleft.” He goes on to note
that “NDN may be the primary information transmission mechanism in certain normal mass,
sustained functions, such as sleep, vigilance, hunger, brain tone, and mood [87].

At its substratum, the brain/mind is organized by the relationship between synaptic firings,
volume transmission, and glial activity. Each process organizes the pattern of events in the others.
The processes are related in a bizarre hierarchy. Comparing these processes to electromechanical
robots circuits, it is as if we have three devices that each continuously and simultaneously updates
the morphology, and consequently, the dynamical laws of the others. Since either can be seen to
be rebuilding the others, from its own perspective, each process appears higher than the other in a
hierarchy. This same kind of hierarchy is found in a hyperset structure. Interpreted as a directed
graph, the nodes in a hyperset form a hierarchy in which, from the perspective of any node in the
hierarchy, that node is at the top. Even at the level of the physical substratum, the brain appears
to be endogenously organized [88–90].

In summary, the brain/mind is observed to perform semantic processes nonlocally. Their
operation is inseparable. In fact, what Damasio defines as Descartes’ error is “the separation of the
most refined operations of mind from the structure and operation of a biological organism” [91].
It is fundamentally incorrect to think of a brain as a computer and mind as the program running on it. 

7.5.5 OTHER BIZARRE EFFECTS

What is remarkable about complex systems and impredicative models is that both produce bizarre
effects. Note the distinction between absurd and bizarre. Absurd effects do not actually occur; they
are incoherent with the causal entailment structure of reality. Bizarre effects do not contradict
reality, but are unexpected. Three of the bizarre effects of complex systems are especially notable. 

7.5.5.1 Determinism Vs. Freewill

Perhaps the most bizarre consequence of a system’s having an endogenous entailment structure is
that the system can produce an unlimited number of behaviors that are all consistent with the
entailment structure. To express semantics in terms of syntax would require an infinite regress of
syntax [92]. In other words, a complex model or an impredicative inferential entailment structure
can produce an unlimited number of true propositions consistent with its inferential entailments.
Similarly, a complex natural system or endogenous causal entailment structure can produce an
unlimited number of events consistent with its causal entailments.

If an MR exists between the two systems, there must be partial congruency of entailment
between them. There must be at least one causal entailment in the complex natural system that
commutes with an inferential entailment in the model; if there is no congruency of entailment
between them, then an MR does not exist between the two entities. Since the model and the process
being modeled are not identical (i.e., the map is not the territory, and the distinction between the
map and the territory is embedded in the territory), there cannot be total congruency of entailment
between them. “There is accordingly no largest model of such a system” [93].

This partial congruency has a remarkable implication. To the extent that the entailment structures
are congruent, the model predicts behaviors of the natural system, and conversely the natural system
predicts behaviors of the model. Both systems have an unlimited number of different entailments
and entailed behaviors (all possible, albeit not equally likely). Since the two systems are not fully
congruent, each system must have entailed behaviors that are not entailed in the other. In other
words, a complex natural system must have behaviors that are fully determined (consequent of the
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causal entailments that led to them), but are not predictable by a given complex model (including
the mental model in the mind of any observer) of the system. In other words, the complex system
is completely determined, but gives every appearance of freewill. 

(Note: If the notion of overlapping infinities gives the impression of doubletalk, consider the
following example. Imagine the set, 3Z, of natural numbers divisible by 3. Also, imagine the set,
2Z, of natural numbers divisible by 2. Most of the members of either set are not members of the
other. The set, 6Z, of natural numbers divisible by 6 contains all the members common to both
sets. All three sets are not only infinitely large but provably have identically the same cardinality
or size, ℵ0. In other words, 2Z and 3Z have infinitely many overlapping members, but just as many
members that do not overlap. Infinitudes of congruent and noncongruent entailments work just the
same way.) 

The idea that a fully determined reality can produce unpredictable behaviors has a dramatic
implication for the popular concept of random events in reality. There may not be any. Probability
may not be a model of some hypothetical underlying randomness of nature. It may turn out as
Jaynes suggests that probability is the measure of our limited knowledge of reality that necessarily
arises from the fact that reality is inherently complex and we have no largest model of it. “Common
language — or at least, the English language — has an almost universal tendency to disguise
epistemological statements by putting them into a grammatical form, which suggests to the unwary
an ontological statement. A major source of error in current probability theory arises from an
unthinking failure to perceive this. To interpret the first kind of statement in the ontological sense
is to assert that one’s own private thoughts and sensations are realities existing externally in Nature.
We call this the ‘Mind Projection Fallacy,’ and note the trouble it causes many times in what
follows. But this trouble is hardly confined to probability theory; as soon as it is pointed out, it
becomes evident that much of the discourse of philosophers and Gestalt psychologists, and the
attempts of physicists to explain quantum theory, are reduced to nonsense by the author falling
repeatedly into the Mind Projection Fallacy” [94].

7.5.5.2 Nonlocality 

We have seen that nonlocal phenomena arise in both semantics and emotions. It also arises in
impredicative representations. Consider the prototypical hyperset, that abstract entity, Ω, which
solves Ω = {Ω}. Under the Zermelo–Fraenkel–Aczel axioms, the solution exists, is a unique entity,
and the fact of its existence does not lead to contradictory propositions. Ω has a definition, but that
definition is not formed by pointing to something else. The defining property of Ω is a specific
constraint of the relationship of Ω with itself. However, you cannot point to Ω or {Ω} and say that
the defining property lies in either place. The definition is nonlocal, or spread across the relationship.
In other words it is the attribute of a nonfractionable process. It is this nonlocal nonfractional
relationship that Rosen identifies as semantic. “Or to put it another way, real mathematical systems
are full of impredicativities — semantic elements that endow these systems with enough inferential
structure to close impredicative loops” [78].

Bateson speaks of the nonlocality of semantics in the same way. He does not limit meaning to
something that must reside in the mind of a knower. He says rather that meaning lies in the
correspondence between a symbol and its referent. “The universe, message-plus-referent, is given
pattern or form — in the Shakespearean sense, the universe is informed by the message; and the
‘form’ of which we are speaking is not in the message nor in its referent. It is a correspondence
between message and referent” [62].

Note the contrast with algorithmic processes which are reducible to open sequences of infer-
ential linkages, and are only concerned with syntax or structure of events. Impredicative processes
with closed loops of hierarchical inferential entailment are concerned with the semantics or meaning
of events [95]. A crucial feature of impredicativity is that the distinction between the map and the
territory is buried within the territory.
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Bateson also notes the crucial distinction between being right and not being wrong. If we are
trying to guess the missing characters in a garbled message, we do not algorithmically explore and
eliminate all the wrong possibilities. We use redundancy afforded by context to focus directly on
the right possibility. That is how people identify partial words on TV’s Wheel of Fortune. 

To appreciate how redundancy works, suppose that meaning is the essence of communication,
and the isolated symbol is the special case. In other words, communication is the creation of
redundancy. From the perspective of an observer of A talking to B, suppose that A has a specific
message on his pad. No new information is added about the message by inspecting B’s message
pad after he receives the message from A. However, what the message means depends on a complex
equivalence of what is being seen, felt, or heard. To B the message content itself is new information.
To the outside observer, the meaning is in the rules of the game played by A and B. They explain
to the observer an improbable coincidence, by what process did the same message appear on both
of their pads? 

To make a guess is to face a cut in a sequence of events and predict what will happen next.
The discontinuity may be temporal or spatial. A pattern is an aggregation that will permit us to
guess the exemplars of a set, given a small subset of exemplars. A message has meaning if it is
about a referent. The “Universe of Relevance” consists of the message and its referent. The message
“It is raining” conveys both the symbolic message and the ontological fact that raindrops are falling. 

If you receive the message, then you have a better than random chance of guessing that it is
raining without looking out the window. The universe is informed by the message. The “form” or
meaning is not the string of symbols or the referent. It is in the correspondence between them.
Note that the meaning is nonlocal. It is not located in either the string of symbols or the referent.
It is entangled or a consequence of the relationship. The fact that you cannot say where the meaning
resides does not make it any less real. Where the meaning resides is nonlocal. This nonlocality is
a bizarre consequence of the endogeny of language. It is a perplexing problem to traditional thinkers
in communications and neurophysiology.

7.5.5.3 Language

Semantic processes are nonlocal and ambiguous. They are found in many processes, not least of
which is natural language. As Chomsky notes from his study of natural language, semantic processes
have another bizarre property; they are generative [96]. Having mastered a language, one can
understand indefinitely many expressions that are outside one’s experience. In synthesizing under-
standing from streams of signs, the normal use of language is a creative activity. 

He says that the motivation to study language is that it provides insights into the human mind.
In particular, the notion of a Universal Grammar illustrates how the mind operates. In Chomsky’s
parlance, grammar is the answer to the question, what is the nature of the knowledge that makes
it possible for a person to normally use it creatively? A generative grammar is the notion that the
rules of grammar allow the construction of an infinitely large set of allowable structures according
to a finite set of rules.

Although Chomsky does not make a causal interpretation of the Universal Grammar, such an
interpretation is justified if one considers that Chomsky does see the process as a transformation,
noting that rules relating deep structure to surface structure are called “grammatical transforma-
tions.” He calls the relationship between surface structure (a set of syntactic rules) and deep structure
(abducted semantic meanings) a “syntactic object.” Deep structures in grammars appear to corre-
spond to real mental constructs or activity. They are the effect produced by the transformation. 

Deep structure is the meaning abducted from an incoming stream of symbols, and clearly this
input to the transformation corresponds to Aristotelian material cause. One can consider the
generative grammar at the heart of the Universal Grammar to be an efficient cause, characterizable
by an as yet undiscovered “law of behavior,” constraining the process of abductive transformation.
The fact that the generative grammar can abduct limitlessly many meaningful outcomes from a
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finite entailment structure suggests that it is endogenous in character, and that the “law of behavior”
describing it is impredicative.

Generative grammar appears the same way for every human language. What distinguishes one
language from another is the surface structure, a formal cause, or syntactic set of parameters or
finite set of rules that modulates generative grammar to operate in a particular way for a particular
natural language. Chomsky sees generative grammar as a rich system of constraints upon possible
surface structures (clearly this is typical of the relationship between efficient and formal cause; the
possible properties of modulating parameters are necessarily constrained by the process that they
modulate). That there are severe constraints on the properties of surface structure explains how it
is that children are so quick to learn the surface structure of a given language from a sparse set of
noisy exemplars? There is no predisposition to learn one language over another. If all are equally
easy to learn, then at the foundation the process imposing the fundamental constraints must be the
same. This hypothesis could be falsified if it failed to explain acquisition of some languages.
However, Chomsky’s own observational data bear out the hypothesis, and he has not found falsi-
fication of the hypothesis anywhere in the observational data.

Although surface structure is syntactic, by serving as the formal cause modulating the generative
grammar that serves as efficient cause in the transformation of symbol streams into meaning, surface
structure plays a crucial role in semantic interpretation. Surface structure subsumes the speaker’s
presuppositions about a sentence. Thus, minor changes in surface structure (e.g., word placement,
passive vs. active) contribute to the semantics or meaning. Even a change in intonation or emphasis
can convey different meanings, as the emphasis often goes to answer a particular question, while
the other information merely adds detail or restates a presupposition. 

Language has irreducible properties, not least of which are generative power, nonlocality of
meaning, and context dependency. Chomsky says that the contributions of grammar and context
to meaning may be inseparable. Given the impredicative character of language, they almost certainly
are. The fact that the process leads to the abduction of meaning has one further implication, that
meaning is subjective; it depends on the perspective of the user of language. Language serves and
is entailed by the function that it serves for the user. In other words, subjective meaning serves as
a final cause that entails the operation of language in the mind of the user (Note: The correspondence
between Aristotelian causal classes and elements of Chomsky’s theory is my observation. Chomsky
may or may not endorse this particular interpretation of his work.) 

Despite the irreducible properties of language, he claims that it is possible to learn something
about it from reductionistic strategies. “Abstracted study” of language ignores context. It considers
formal structures (syntax, deep structure, surface structure, and semantics) and relations between
them. Chomsky considers that this is a legitimate hypothesis, although its presuppositions are not
self-evident (in fact, by his own recognition of the context dependency of language, he himself
cuts the ground out from under the presuppositions). The hypothesis is that linguistic competence
is separable from how language is used. As in other forms of reductionism, its popularity is based
on its ability to solve a certain class of problems. Since this strategy can solve some linguistic
problems, might it not solve all linguistic problems?

Chomsky admits that the use of language is not explainable or understandable by such a
reductionistic strategy. Consequently, he fears that it may be infeasible to study significant problems
of language communication. His fear would be well founded if theoretical modeling were to
continue to ignore final cause. Thus, even from a reductionist starting point, Chomsky allows the
possibility that new intellectual tools are needed, and might be feasible. 

The interaction of mind and language is so fundamental that Chomsky sees the need of a branch
of psychology that has the goal of exhibiting and clarifying mental capacities to learn and use
language. This capacity is apparently unique to humans. Language must be abductive, producing
novel effects from a finite but endogenous causal entailment structure. This creativity or seeming
“emergent complexity” makes it impossible to understand human behavior by stimulus–response
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or other reductionist methods. (Note: Again, this is my interpretation of Chomsky’s words. He does
not appear to believe that there is a serious alternative to reductionism. However, he does discuss
the fact that traditional methods are not up to the task.) 

7.6 DOES THE ENDOGENOUS PARADIGM IGNORE PAST INSIGHTS?

Remarkably, one of the objections to the notion that there exist incomputable processes that can
only be represented by incomputable models is that it allegedly ignores decades of work by
celebrated thinkers. That work typically falls into three classes — the computational theory of
mind, the various accomplishments of the Artificial Intelligence community, and the seemingly
more compelling instance of Von Neumann’s self-replicating automaton. Despite the all-inclusive
claims made by the champions of these ideas, it is clear that the ideas are far from all inclusive.
In light of that disparity, rather than ignore their work, it could perhaps be more appropriate to ask,
what principles have they ignored?

7.6.1 COMPUTATIONAL THEORY OF MIND

One of the more curious discussions of a computational theory of mind is that put forward by
Kosslyn and Koenig. A superficial interpretation of Figure 9.1 in Chapter 9 of Wet Mind might be
that the essential functions of the brain can be captured in a block diagram that is roughly as
complicated as a digital signal-processing chip. However, in the context in which that diagram is
given, they make the following qualification: “… we have been vague about the source of (free)
‘will,’ the ultimate source of decision making in the brain. What decides what to do next? We have
inferred that there must be a “decision subsystem,” but have not said much about it. We have
eschewed talk of consciousness and emotion” [97]. 

Of these qualitative behaviors, they seem to find consciousness to be the least amenable to
computational interpretation. “As we have demonstrated in previous chapters, the vocabulary of
computation has proven useful for understanding mental activity. But there is no corresponding
vocabulary for understanding the texture of experience” [98]. They then enumerate the requirements
for an adequate theory of consciousness. 

Their attributes of consciousness fly in the face of the notion of a brain as a computer. It is
nonreducible. “Any theory of consciousness must describe a phenomenon that cannot be replaced
by a description of brain events” [98]. It is inseparable from its physical substrate. “Thus, even
though a description of consciousness cannot be replaced with a description of brain activity, brain
activity is a necessary prerequisite to consciousness” [99]. It is nonlocalizable to brain events. “If
the theory posits that consciousness has a function, then it must posit a function that cannot be
accomplished by brain events per se” [99]. It does not serve as a largest model of mental activity.
“A theory of consciousness must specify why some mental processes are accompanied by conscious
experience whereas others are not” [99]. Finally, and, most remarkably, the hierarchy of conscious-
ness (a behavior of the whole; organizational rather than physical) and brain activity (behaviors of
the parts; purely physical) form closed loop in which each updates the other. “Thus, we assume
that the relation between brain and consciousness cuts both ways: activity in the brain affects
consciousness and vice versa. This requirement is daunting. Indeed, at first glance, it seems
paradoxical: Something that is not a physical event must not only arise from a physical event, but
also must be capable of feeding back and altering it” [99]. All these attributes are incomputable,
but fully consistent with the interpretation of consciousness as an effect arising from an endogenous
structure of causal entailment in the brain/mind.

Probably the most visible champion of the computational theory of mind is Pinker, a former
student of Kosslyn’s. Pinker does not exactly claim that the whole world (or even the whole human)
is reducible. He admits the existence of consciousness (subjective), self (imponderable), free will

DK3072_book.fm  Page 167  Thursday, October 19, 2006  6:21 PM



168 Systems Biology: Principles, Methods, and Concepts

(an enigma), meaning (a puzzle), knowledge (perplexing), and morality (a conundrum) [100]. The
characterizations that he assigns to each process suggest that he agrees that none are amenable to
computation.

How should we address such phenomena? Borrowing an idea from McGinn, he suggests that
we should address them not at all [101]. Starting from the premise that the brain is a computer, it
is incapable of comprehending incomputable processes. The suggestion has a fatal flaw. It ignores
the fact that all those incomputable processes are themselves produced by the brain/mind. If the
brain were a computer, it should produce none of them. It is clear from other parts of the book
that the real reason that Pinker champions the computational theory of mind is a perfectly fair one.
He has never seen what he regards as a compelling alternative. 

Perhaps the most eloquent defense of the computational theory of mind is that by Churchland.
Not surprisingly, she makes scant mention of ambiguity and no mention at all of the abductive
resolution of ambiguous cues in a given context. She addresses semantics strictly in terms of Tarski’s
highly formalized semantics. In other words, she does not address the means by which minds use
ambiguous sensory cues. 

She does admit that “there is no algorithm for making wise choices” [102] and is skeptical of
the notion that choices are uncaused, or are (equivalently) the result of some sort of quantum
mechanical magic. That minds make choices, and do so nonalgorithmically remains to be explained
(by somebody else), with the burden of proof resting (not unreasonably) upon the explainer. The
idea that seemingly free (caused but not fully predictable) choices could be entailed by the inherent
ambiguities in an endogenous causal entailment structure seems never to have come to her attention.
In other words, she interprets brain function in terms of connectionism, even knowing that algo-
rithms, connectionist, or otherwise, do not make choices. Apparently she does so for much the
same reason as Pinker; computation may be inadequate to explain some mental processes, but
nobody has shown her a more compelling alternative. 

7.6.2 ARTIFICIAL INTELLIGENCE

The claim that computer simulation can produce new information is probably a no more articulate
explanation than the one offered by Simon. While admitting that a simulation is no better than the
assumptions built into it, and that a computer can do only what it is programmed to do, he
nevertheless says, “despite both assertions, simulation can tell us things we do not already know”
[103]. One of those things turns out to be logical deductions that would be impractically long for
the human to work out with a pencil and paper. The other is that we can use the computer to test
various models, until we find one that best fits observed data, thereby uncovering insights into
natural laws. 

It is important to realize that neither of these processes leads to an algorithm to create novel
information. The first process simply reveals information already present in the premises fed into
the algorithm. The second process, using artificial intelligence (AI) simulations to test computational
models, is simply Bayesian parameter estimation [104] done suboptimally. In both cases the
algorithm does not create new information. Given novel information provided by the human user,
a computer simply reveals consequences that are already present, but obscured to human sensibil-
ities. By exploiting this power, the human can learn things faster by using a computer than by using
a pencil. However, in either case, it is the human both learning and creating novel information; the
computer’s behavior is no more intelligent than the pencil’s. 

Thus, despite the overwhelming evidence that brains and minds are irreducible and nonalgo-
rithmic, one occasionally still hears the claim that “Artificial Intelligence” programs “learn” or
create new information just as brains do. Four examples are typically offered, connectionism,
Markov chains, genetic algorithms (GAs), and fuzzy systems, but all of these processes simply
reformat existing information without adding anything new to it. 
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7.6.2.1 Connectionism

It is undeniable that neural nets can do useful things [105]. What is highly deniable is that they
learn. Fundamentally, neural nets are based on a curve-fitting algorithm called the perceptron. The
proof that the perceptron converges in a finite number of steps shows that it is just another algorithm
[106]. All it actually does is to iteratively solve a set of inequalities to discover the decision surfaces
already implied by the data. The role of hidden layers in the process is nothing more than enabling
the possibility that the decision surfaces to be deduced from the data might be nonlinear. 

Attributing “brain-like” behavior to the connectionist paradigm fails to recognize the physical
reality that brains are much more than networks of synaptically connected neurons [89,107].
Furthermore, a numerical weight purporting to describe “strength” is a superficial description of a
synaptic connection [108,109]. In other words, the inferential entailment structure of algorithms
inspired by the connectionist paradigm only superficially resembles the causal entailment structure
of the brain, and fails to characterize most brain processes. 

7.6.6.2 Markov Chains

“Intelligent” behavior is sometimes explained in terms of Markov chains. “Random variables X, Y,
Z, are said to form a Markov chain in that order (denoted by X → Y → Z), if the conditional
distribution of Z depends only on Y and is conditionally independent of X. Specifically, X, Y, and
Z form a Markov chain X → Y → Z if the joint probability mass function can be written as p(x,y,z) =
p(x)p(y|x)p(z|y)” [110]. Some people argue that Markov chains behave intelligently by adding novel
information to a process.

They do not. Ironically, Markov chain theory leads to a diametrically opposite conclusion. “The
data processing inequality can be used to show that no clever manipulation of the data can improve
the inferences that can be made from the data.” After several pages of mathematical symbolism,
Cover and Thomas show that if X → Y → Z then I(X;Y|Z) ≤ I(X;Y). In plain language, “the
dependence of X and Y is decreased (or remains unchanged) by the observation of a ‘downstream’
random variable Z ” [110].

7.6.2.3 Genetic Algorithms

Optimization processes can be useful tools of modeling behavior of living entities [111,112]. It is
also widely supposed that intelligent behavior is somehow characterized by an optimization process.
Indeed, most AI algorithms have an optimizer at the heart of the process. This leads to the
observation that it might be possible to produce an algorithm that “learns” directly by evolving in
a way similar to a model of biological evolution. 

It is well known that gradient descent is an inadequate optimizer because it is trapped at the
first local minimum that it encounters. A global optimization algorithm searches for the global
minimum in an objective function that is pockmarked with suboptimal local minima. Many operate
on the basis of not especially well-informed guessing. This leads fairly directly to the “no free lunch”
theorem, that no global optimizer is generally superior to random guessing over the entire set of
objective functions [113].

Advocates of the GA claim that it makes better guesses than the free lunch theorem would
lead one to expect. The schemata that are implicitly evolving during the process inform subsequent
guesses of the more promising places to search in the objective function space. In fact, this gathering
information from bad guesses to make better-informed subsequent guesses is thought to be a kind
of “learning” [114].

However, what is interpreted as learning is simply a process of deducing information that is
already present in the objective function. Global optimizers, including GAs neither learn nor add
novel information. All the information is already present in the objective function and is waiting
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to be revealed. Like an algorithm that solves an equation, an optimizer simply uncovers information
that was already there when the problem was specified. Global optimization algorithms have many
useful engineering applications and in many of those applications a well-designed GA converges
much faster than other optimizers.

Is emulating brains one of those applications? If an algorithm designs a patentable invention,
is this not the abduction of novelty and evidence of intelligent behavior? Suppose it is not a fluke.
If an algorithm designs many patentable inventions, is that not overwhelming evidence of the
abduction of novelty and evidence of intelligent behavior? Genetic programming (GP), a GA that
evolves computer programs does just that; it has duplicated and even improved upon the design of
many patented devices [115]. In fact, this seems to settle the question once and for all that algorithms
can abduct novelty. 

Or so it seems if one does not understand the process of invention. Invention is based on an
ambiguous description of a need, the construction of a device that fulfills the need, and the
development of unambiguous specifications after the device is constructed. GP is an algorithm,
and its input must be unambiguously specified. Going from an ambiguous need to an unambiguous
specification, a task performed by the programmer and not the program, is where the inventiveness
lies. Evolving an implementation from the unambiguous specification, dramatic as it seems, is still
deduction based on the reshuffling of information already presented.

Edison is supposed to have said “genius is 1% inspiration and 99% perspiration.” This quote
overlooks the detail that without the 1% inspiration, the 99% perspiration would be wasted. A
human using GP still performs the 1% that matters, the abduction of novel information by creating
the unambiguous specification. The GP running on a computer merely replaces the 99% perspiration
with a motorized cooling fan. It tediously infers the device implied by the novel specification, but
it creates no novelty of its own. 

7.6.2.4 Fuzzy Systems

The attribute of fuzziness signifies the measure of the dilution of a property. The dilution of property
is sometimes confused with probabilistic uncertainty, and that supposed uncertainty is confused
with the uncertainty that arises in predicting the behavior of intelligent processes. Fuzziness, the
measure of the dilution of a property, is not related to probability, a measure of uncertainty about
the occurrence of an event.

To appreciate the difference, imagine that you have ten wells. Suppose that there is a toxin
present in the water, such that if the toxin is present in a concentration of less than 20%, it is
harmless. Suppose that you have a priori knowledge that each of the wells has an equal probability
of 0.1 of being a member of the class of lethally toxic. Is it safe to drink from any of them? The
answer is no, because while nine of the wells contain no toxin at all, the tenth one is lethal; with
no information as to which is which, drinking from any of them carries a one in ten risk of being
killed. Suppose, on the other hand, that you have a priori knowledge that each of the wells has an
equal fuzzy membership of 0.1 of being in the class of lethally toxic. Is it safe to drink from any
of them? The answer is yes, because no matter which well is selected, it contains a harmless dose
(10% concentration) of the toxin.

The rules of fuzzy set membership are defined by a straightforward appeal to crisp logic [116].
The degree of membership of a given element in a given set is determined by appeal to a membership
function, but where do the membership functions come from? “Fuzzy membership functions can
have different shapes depending on the designer’s preference or experience” [117]. In other words,
at its foundation, it refers to a lookup table of simple geometric shapes. There may be some
inventiveness on the part of the designer devising the membership functions, but the algorithm
merely unambiguously shuffles the unambiguous data fed into it. Like the other AI techniques
discussed above, fuzzy logic algorithms have many useful engineering applications. However once
again, emulating the brain’s ability to deal with ambiguous information is not one of them. 
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7.6.3 THE SELF-REPLICATING AUTOMATION

The essence of the position of the advocates of the computational theory of mind consists of an
acknowledgment of the existence of novel behaviors entailed by incomputable processes, coupled
with the dismissal of these processes as irrelevant unless someone else finds a viable theory to
explain them; meanwhile they will keep on computing. The fallacy underlying the AI paradigm is
the mischaracterization of processes that uncover information already present as if the processes
were abducting novel information. In contrast, the claim that Von Neumann made is much more
substantive; he claimed to have produced an algorithm that actually does abduct something novel.

He sought to discover “What principles are involved in organizing these elementary parts into
functioning organisms, what are the traits of such organisms, and what are the essential quantitative
characteristics of such organisms?” [55]. Von Neumann acknowledges that growth and exact
reproduction are not signatures of life; he observes that crystals do no less but are plainly nonliving.
“A way around this difficulty is to say that self-replication includes the ability to undergo inheritable
mutations as well as the ability to make an organism like the original” [118]. In other words, the
whole claim that the Universal Constructor is a simulacrum of life hangs on the notion that is can
pass along heritable mutation. 

Von Neumann was aware of the magnitude of the problem, and acknowledged the essential
abductive behavior of living processes. “Evidently, these organisms have the ability to produce
something more complicated than themselves” [119]. He was probably unaware of the specific
minutia of the Data Processing Inequality, but he was painfully aware of the idea and the genuine
limitations that it imposes. “So, one gets a very strong impression that complication, or productive
potentiality in an organization, is degenerative, that an organization which synthesizes something
is necessarily more complicated, or of a higher order, than the organization it synthesizes” [119].

Although he acknowledged the principle, he believed that it had effect only below a threshold
of complication. “We will stick to automata, which we know completely because we made them,
either actual artificial automata or paper automata described by a finite set of logical axioms. It is
possible in this domain to describe automata, which can reproduce themselves. So at least one can
show that on the site where one would expect complication to be degenerative, it is not necessarily
degenerative at all, and, in fact, the production of a more-complicated object from a less-complicated
object is possible. The conclusion one should draw from this is that complication is degenerative
below a certain minimum level” [119]. Above that threshold, the automaton should be generative,
and he calls this the “completely decisive property of complexity” [120].

Had Von Neumann really been able to demonstrate the ability of the Universal Constructor to
construct a thing more complicated than itself, he would have proved, by construction, the conclu-
sions quoted above. However, his attempt to do so leads to a subtle, but fatal, contradiction in that
construction. To recognize the contradiction, we must follow his construction in a bit of detail. It
begins by postulating a completely artificial milieu in which float an unlimited supply of parts, of
perhaps a dozen or so different kinds.

Also, found in this milieu are assorted specimens of φ(X), a chain of binary code that is a
complete and unambiguous description of automaton X, another object floating in the milieu.
Von Neumann introduces the notion of a separate φ(X) only because he does not want the description
of his Universal Constructor to get sidetracked into irrelevant and nonilluminating details of how
the Universal Constructor abstracts φ(X) from X. He simplifies his description of the Universal
Constructor, with no loss in its replicative power, by eliminating an abstraction function, and instead
postulating that for every X in the milieu there is a φ(X). However, since φ(X) is strictly an artifact
of the replication process, there are no floating abstractions. This is a crucial point; there are no φ(X)
chains in the milieu except those that correspond to actual objects, X, already in the milieu [121]. 

Into this milieu, he introduces the Universal Constructor, consisting of three components A, B,
and C. A is a Universal Machine Tool, which devours a copy of φ(X) and while so doing constructs
X from the parts floating in the milieu. He says that this process is a succession of unambiguous
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steps in formal logic. B is a duplicator, which devours a copy of φ(X) and while so doing constructs
two new copies of φ(X). These two steps add nothing new. A produces X given φ(X), but X is no
more complex than its complete model. B produces two copies of φ(X) given one copy of φ(X),
but two copies of φ(X) is not a whit more complex than one copy. Next, he adds a control automaton,
C, to A + B. C actuates A or B according to a pattern. Step 1: C causes B to duplicate φ(X). Step 2:
C causes A to make X and consumes one copy of φ(X). Step 3: C ties φ(X) to X, and separates
φ(X) + X from (A + B + C). The result is two entities, the Universal Constructor (A + B + C) and
a new entity φ(X) + X, where the new X is an exact duplicate of some other object X in the milieu
[122].

He then shows that substituting A + B + C for X in φ(X) produces a perfectly legitimate recursive
algorithm. To operate the algorithm, start with Universal Constructor (A + B + C). To this is attached
a complete description of itself φ(A + B + C), leading to (A + B + C) + φ(A + B + C). C causes
B to copy f. At the end of this step, we have (A + B + C) + φ(A + B + C) + φ(A + B + C). C
causes A to make a copy of (A + B + C), given one of the two copies of φ(A + B + C) and parts
from the milieu. At the end of this step, we have (A + B + C) + (A + B + C) + φ(A + B + C).
Then C cuts the (A + B + C) + φ(A + B + C) loose from the agglomeration, thus resulting in two
distinct entities, (A + B + C) and (A + B + C) + φ(A + B + C). Thus, the Universal Constructor
has reproduced itself, with neither loss, nor gain, in complexity [122].

As a step toward producing increased complexity, he postulates an automaton D that can be
temporarily tacked onto the Universal Constructor (A + B + C), just long enough to generate a
copy of φ(A + B + C + D). Then (A + B + C) + φ(X) where X → A + B + C + D makes a new
specimen of (A + B + C + D) + φ(A + B + C + D). This has still not added complexity to the
system. The original A + B + C and the floating D have exactly the same complexity whether
tacked together or not, and producing an extra copy of A + B + C + D adds no complexity to what
existed before [122].

Von Neumann acknowledges that the foregoing process is no more complex than crystal growth,
and is not at all the thing that he is really after. To progress from exact duplication to complexity,
in this context the construction of a thing that has never existed before, the description φ(A + B +
C + D) must somehow morph into φ(A + B + C + D′), where D′ is an object that has never existed
before. Run this new description through the Universal Constructor, and you have created a new
thing as a result. A + B + C + D′ is an object that never existed before [123].

At this point, the construction collapses. He provides no means of obtaining φ(A + B + C + D′),
given φ(A + B + C + D). For this to occur, Von Neumann suggests that we need a “random change
of one element” [123]. By momentarily postulating randomness, he has temporarily forgotten that
he has already forbidden it in his model. The idealized world in which the Universal Constructor
operates is specifically designed to preclude random change. In order to obtain exact replication,
all descriptions φ(X) are complete and unambiguous. Consequently, all processes, X, are completely
determined, and not subject to random behavior. The only way of obtaining φ(X) is by observation
of X. There is no process for modifying φ(X). To implicitly include an additional postulate that
φ(X) can fluctuate randomly contradicts the initial postulate of complete and unambiguous deter-
mination of φ(X) that is necessary to assure the stability of the Universal Constructor. 

Stated simply, in order for the Universal Constructor to demonstrate a threshold of complication
beyond which “the production of a more complicated object from a less complicated object is
possible,” it must reside in a milieu that simultaneously forbids and requires random occurrences.
Rather than a proof by construction that such a thing is possible, we see instead a proof contradiction
that it is not. The Universal Constructor does not provide an exception to the Data Processing
Inequality. He later came to the realization that brains do not work that way. Near the end of his
life, he says of processes in brains, “There exist here different logical structures from the ones we
are ordinarily used to in logics and mathematics” [54]. Had he not died an untimely death, his own
insights might have led him to concepts that only in recent years have begun to be discovered by
others. 
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7.7 INCOMPUTABLE DOES NOT MEAN NONENGINEERABLE?

Because their hierarchical closed-loop inferential entailment structures have internal ambiguities,
impredicatives such as hypersets afford a way to reason about natural processes whose hierarchical
closed-loop endogeny of causation also entail ambiguity. Such entailment of ambiguity abounds
in living processes. Because they are a means of representing ambiguity, impredicatives provide
an alternative to algorithms, mathematical processes to which ambiguity is a property absolutely
forbidden [53].

The notion that no algorithm describes endogeny troubles some people. The claim of incom-
putability is often mistaken for a claim that endogenous processes cannot be understood rationally.
This error stems from two common misconceptions. One is the “Mind Projection Fallacy,” the notion
that our epistemological descriptions drive events in ontological reality, or more simply the inability
to distinguish our models from reality [124]. The other is the incorrect assumption that mathematics
is exclusively algorithmic. 

Attempting to “compute the incomputable” is a fools’ errand, but impredicative models afford
a practical way to engineer the incomputable. Hyperset theoretic models have been used to reason
about semantic problems, uncovering ambiguities not previously noticed [125]. Impredicative
models, including those justified by hyperset theory, and possibly implemented by the strategies
described as “situation semantics,” offer a promising approach to constructing impredicative models
of endogenous processes [126–129]. 

Rational but qualitative prediction may seem like a modest promise, but since impredicatives
describe effects ignored by reductionistic methods, the implications could be dramatic. They give
us a radically new strategy to rationally decide what to do next in scientific and engineering research.
It is the recognition that no algorithm behaves semantically, and that leads us to the consideration
that perhaps the most fruitful near-term strategy for achieving a breakthrough in sensing and control
of large processes is to “wire a human into the loop” [88,89].

It is feasible with existing technology to noninvasively “wire” a stream of electronically
generated symbols directly into and out of the human nervous system. At the present time, Bach-y-
Rita has successfully demonstrated medical prostheses that noninvasively couple electronically
generated images into the human visual cortex, enabling the blind to see [130–135]. Enough is
understood about cognitive processes of unconscious integration that it is believed to be practical
to train a human to experience practically any stream of data as abstracted sensations and percepts,
in effect directly sensing the meaning of the data [136,137]. NASA Ames is able to noninvasively
couple data from the nervous system into electronics; their research goal is to control a spacecraft
“by thought” [138,139].

Combining these technologies, and using the principles of endogenous processes, it is feasible,
with currently available enabling technology, to develop a process by which a human operator
temporarily “becomes one” with a large system (such as a computer network, a spacecraft, or even
a steelmaking process). The operator will experience input data by direct sensation and perception,
assess the totality of the process by feel, and initiate control actions mentally. Rather than reading
numbers or graphics from a screen and manipulating knobs and keys, the operator will mentally
modulate the process such that it continually “feels right.” 

Slightly further in the future, the implications of endogenous systems could be quite startling.
Insights into endogeny might lead to the long sought after “super-Turing” man-made artifact that
operates semantically. In physics, it might enable us to make practical use of the “spooky action
at a distance” effects observed in quantum entanglement, or more prosaically, but no less dramat-
ically, it might lead to a solution to the century-old “measurement problem.” In biochemistry, it
could lead to an explanation of prion behavior, which, in turn, could help us to discover new
principles of protein folding (we do not really know the “rules” of protein folding thus far). In
medicine, understanding prion behavior is the key to dealing with “Mad Cow Disease” and possibly
a whole category of degenerative brain diseases including Alzheimer’s.
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Longer term, perhaps, the most dramatic effects of an understanding of endogenous processes
would be in psychology. If abduction could be understood mathematically, then it might serve as
the foundation for understanding of human semantic processes. Starting from the question of how
data are abstracted sensations, sensations into percepts, and percepts into concepts, an overarching
“theory of cognition” might be discovered. This might serve as the basis of answering many of the
perplexing questions of human behavior. 
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8.1 INTRODUCTION

 

A frequent conventional mischaracterization of biology is its presentation as a mere derivative,
nothing more than the cumulative effect, of processes traditionally studied by physicists and believed
to belong to either physics or chemistry. According to some opinions, this misrepresentation of life
science finds support in the notion that von Neumann’s self-reproducing automaton provides an
adequate paradigm for living processes. For instance Poundstone [1] writes:

“Not only can a machine manufacture itself, but von Neumann was able to show that a machine
can build a machine more complex than itself. As it happens, these facts have been of almost no
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use (thus far, at least) to the designers of machinery. von Neumann’s hypothetical automatons have
probably had their greatest impact in biology.”

Despite the realization that “von Neumann’s work made no specific assertions about biology
[2], some authors [3] are quick to suggest that the definition of life is that which “behaves” like
von Neumann’s models of a self-replicating automaton. 

Extravagant claims of far more significance for von Neumann’s models than he claimed for
them himself are by no means limited to Poundstone [1,3]. For instance, in their foreword to one
of von Neumann’s works [4], the Churchlands see in von Neumann’s work not only an adequate
characterization of life itself but also so powerful a description of cognition that they offer as how
a case can be made that von Neumann is the “Newton of the Mind.” It is unlikely that von Neumann
saw himself as the “Newton” of anything. Newton’s significance was in discovering a brief set of
general principles that account for a wide range of mechanical phenomena. In contrast, von Neumann
articulated the urgent need for a brief set of general principles that account for a wide range of
automatic phenomena, and offered some background and suggestions as to how such a theory might
be discovered. However, he never claimed to have reached nor even approached the goal as he writes:

“Let me note, in passing, that it would be very satisfactory if one could talk about a “theory”
of such automata. Regrettably, what at this moment exists — and to what I must appeal — can as
yet be described only as an imperfectly articulated and hardly formalized “body of experience” [5]. 

There are several substantive claims made about von Neumann’s models that he himself did
not make for the compelling reason that the claims are groundless. The first is the claim that von
Neumann’s complete and unambiguous description of an automaton is a paradigm for genetic
description in an organism. “Biologists have adopted von Neumann’s view that the essence of self-
reproduction is organization — the ability of a system to contain a complete description of itself
and use that information to create new copies [6].” What von Neumann saw was that a complete
and unambiguous description of itself is an absolutely 

 

indispensable

 

 requirement for his self-
reproducing automata. In contrast, speaking of the gene in the organism, he observed that “it
probably need not contain a complete description of what is to happen, but only a few cues for a
few alternatives [7].” Because completeness of description is indispensable to the operation of the
automaton, and organisms lack that completeness, it is not reasonable to suppose that the behavior
of the automaton is a description of the distinguishing features of the organism. 

Another claim is that von Neumann’s 29-state model is a mathematical description of biological
reproduction, and stands in contrast to the mechanistic reproduction of crystal growth [1]. The fact
is that von Neumann regarded the capacity to pass on heritable mutations as the property that
distinguishes biological reproduction from mechanistic reproduction. “One of the difficulties in
defining what one means by self-reproduction is that certain organizations, such as growing crystals,
are self-reproductive by any naive definition of self-reproduction, yet nobody is willing to award
them the distinction of being self-reproductive. A way around this difficulty is to say that self-
reproduction includes the ability to undergo inheritable mutations as well as the ability to make
another organism like the original [8].” A frequently unnoticed fact is that reproduction in the
29-state automaton 

 

is

 

 just like crystal growth; von Neumann specifically 

 

excluded

 

 the capacity to
pass on heritable mutations from the 29-state model. He did so for the specific reason that he could
not devise an unambiguous description of the capacity to evolve [9]. (

 

Note

 

: In his kinematic model,
von Neumann did envision a machine that, given a description of itself, would produce offspring
more complicated than itself. However, as demonstrated later in this chapter, the development of
that model was based on contradictory axioms.)

The confusion that von Neumann’s models cause in biology seems to stem from the error of
supposing that a key distinguishing feature of life is the capacity of an entity to make an exact copy
of itself from an internally held complete description of itself, and then attributing this concept to
von Neumann [3]. As noted above, von Neumann did not see biological organisms as containing
complete descriptions of themselves. Furthermore, to distinguish a complex process from a simple
mechanism, he believed that the key property was the capacity of a process, having been given a
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complete description of itself, to produce a process more complicated than itself. “There is thus this
completely decisive property of complexity, that there exists a critical size below which the process
of synthesis is degenerative, but above which the phenomenon of synthesis, if properly arranged,
can become explosive, in other words, where syntheses of automata can proceed in such a manner
that each automaton will produce other automata, which are more complex and of higher potentialities
than itself [10].” Again, this is a capacity that he specifically excluded from the 29-state model.

The task that von Neumann set for himself was not to seek a mathematical theory of either life
or mind, but rather to look for some rough guidelines about how to resolve some perplexing
questions in computation by asking questions about organisms and their nervous systems. He first
presented the overall strategy in his 1948 lecture to the Hixson symposium, titled “The General
and Logical Theory of Automata [11].” It must be appreciated that despite the title, the lecture was
not the recitation of an actual theory, but rather was a statement of the conditions that any such
theory would need to meet. He provided more details in a series of lectures delivered at the
University of Illinois the following year [12]. He then spent a number of years designing a construct
known as the 29-state automaton [12]. Finally, he articulated what he saw as fundamental differences
between the computer and the biological brain [13]. 

 

8.2 THE GENERAL AND LOGICAL THEORY

 

Where von Neumann stood out from the crowd was in his ability to pose questions. He saw an
objective of a general and logical theory of automata as answering two basic questions. “How can
reliable systems be constructed from unreliable components? What kind of logical organization is
sufficient for an automaton to be able to reproduce itself [14]?” He hoped that the process of
constructing answers to these questions would point the way to general theoretical principles of
automata.
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Regarding the first question, he explored it, but not in detail [15]. The concern was that if a system
were constructed of many unreliable components, it seems intuitively inevitable that their proba-
bilities of error should accumulate such that the probability of error of the total system approaches
50:50, thus rendering the system useless. He found that for “single line” automata, he could put
several unreliable automata in parallel and use a voting scheme that is mediated by several other
unreliable “majority organs.” If conditions were contrived in just the right way, the probability of
error of the overall network would be a Taylor expansion of the error in any one of the parallel
automata. If the probability of error was small, the high order terms would become insignificant,
and the probability of error of 

 

a system of many components

 

 would be approximately proportional
to the probability of error of 

 

one

 

 

 

of its components

 

. Thus, there exists a counterexample to the
hypothesis that large systems of unreliable components are inevitably useless. However, the coun-
terexample does not point to a strategy for reliability. The number of components necessary for
implementing the strategy in practice, even for modest computational problems, turns out to be
greater than the number of electrons in the Universe.

He then considered a multiplexing scheme. The idea here is that data are carried on a large
bundle of multiple lines, and the automaton determines the state of the bundle by a voting scheme
that leads to one of three assessments, true, false, or “I don’t know.” With the multiplexing
scheme that von Neumann designed, “using large enough bundles of lines, any desired degree of
accuracy (i.e., as small a probability of malfunction of the ultimate output of the network as desired)
can be obtained by a multiplexed automaton” [16]. Remarkably, increasing the number of lines in
the bundle by one order of magnitude can decrease the probability of error by 

 

eight

 

 orders of
magnitude. The problem with the scheme is that it requires bundles on the order of 20,000 lines
to achieve reasonable reliability, beyond the scope of the enabling technologies of the time.
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He mentions in passing that the numbers are “not necessarily unreasonable” for what he calls
“the microcomponentry of the human nervous system [17].” It is important to recognize that he
makes no claim that brains are actually wired this way. He merely notes that neurons are small
enough and abundant enough that brains could be wired this way.

In investigating the issue of how reliable systems could be constructed from unreliable com-
ponents, von Neumann suffered from two severe handicaps. First, there was no theory of “proba-
bility as extended logic” by which reliability could be studied in principle. Second, the scheme he
identified for implementing reliability was unfeasible with the technology of his time, and he had
no practical means of testing any theoretical speculations that he might develop. Given the apparent
hopelessness of the task, von Neumann took the eminently sensible approach of briefly saying what
he could say on the subject, and then moved on.
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Another answer to the problem, suggested by biology, is that in the face of a failed component
organisms either regrow the component or grow a novel work-around to compensate for the lost
function. If replacement parts could be grown, in process, it might solve the reliability problem,
and von Neumann sought an explanation of how it might happen. He suspected that the process was
the result of replication with heritable mutation. He hypothesized that if an automaton process
passes a “threshold of complication,” then the offspring of the automaton can be more complicated
than the parent. He then attempted to prove the hypothesis by construction. Unfortunately, in his
construction, the development of the kinematic model of self-replication, he obtained this propensity
to evolve by implicitly (and unknowingly) requiring contradictory hypotheses. As is discussed in
some detail below, he simultaneously required and forbade noise in the kinematic model. In the
models of self-replication that he developed subsequent to the kinematic model, he strengthened
the prohibition on noise, focused strictly upon exact replication, and 

 

ignored

 

 evolution.

 

8.3 THE ILLINOIS LECTURES

 

The year after the Hixson lecture, von Neumann discussed his ideas on self-replication in much
greater detail in a series of five lectures at the University of Illinois [12]. These lectures culminated
in what von Neumann would later call the kinematic model of self-reproducing automaton. It is
the interpretation of this model that has caused endless confusion in subsequent generations.
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It is important to note von Neumann’s practical perspective. He was constructing the most com-
plicated devices ever built by the Hand of Man. In principle, if any part failed, the whole might
fail. The practical problem was how to get reliable operation out of such a big collection of parts?
The strategy he pursued was to ask how organisms do it. However, because he retained a strictly
reductionistic bias, presuming that the behavior of the whole is completely accounted for by the
cumulative effect of local interactions of the parts, he chose to ignore much of what organisms
actually do. Thus, he saw the problem as “the behavior of very complicated automata and the very
specific difficulties caused by high complication,” where high complication was entailed by the
extreme number of parts in the system [18]. 

He presupposes that brains are automata, and that a general theory of automata would yield
insights about brains as well as computers [19]. He focuses on computers noting that “of all automata
of high complexity, computing machines are the ones which we have the best chance of under-
standing [18].” On its face, it seems a sensible enough strategy. We ask questions about computers
because we have a serious possibility answering them. There is a reason why this is so. The computer
is the closest we have come to physically realizing the reductionistic ideal, and we have nearly
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400 yr of spectacularly fruitful experience asking and answering questions about reductionistic
idealizations of real-world processes. In later work, von Neumann would conclude that the brain
differs substantially from the computer [20]. However he never questioned his presupposition that
brains are automata, nor did he consider the possibility that the difference between brains and
computers might arise from the fact that the computer is a close approximation of the reductionistic
ideal, while the brain departs substantially from the reductionistic paradigm [21]. 

He next enters into a long digression of the benefits that would accrue if computers were widely
used to solve nonlinear partial differential equations. He seemed to think that most, if not all, of
the open questions of science are fully characterized by nonlinear partial differential equations,
and would be decisively settled by an effective strategy of solving them. He notes that computational
simulation of phenomena should be less costly and dangerous than experimentation.

He then turns his attention to the idea of complexity. In a world of strict reductionism, the
whole is an epiphenomenon fully captured by accounting for all the parts. Complexity is an
indication of many parts. How does one measure the complexity of a system? Count the parts.
There is a problem as to what constitutes a part. There is an obvious, if not quite reducible, solution.
Count the parts that matter. However, the key point is that in this context, von Neumann’s notion
of complexity is “lots of parts.”

Later in the lecture he identifies a profound problem that was ignored in his time, and, for the
most part, continues to receive short shrift. “The reason for using a fast computing machine is not
that you want to produce a lot of information. After all, the mere fact that you want some information
means that you somehow imagine that you can absorb it, and, therefore, wherever there may be
bottlenecks in the automatic arrangement, which produces and processes this information, there is
a worse bottleneck at the human intellect into which the information ultimately seeps [22].” The
weakest point in any computer system is the human–machine interface.

He concludes the lecture with a few practical observations about computing. A computation
may require billions of invisible intermediate values; the user is interested in a very short list of
results. Memory must be large enough to hold the intermediate values. Although memory can be
implemented in the same switching elements used to perform the logical operations, it is prohibi-
tively costly to do so, and memory can be implemented with far less costly technologies than are
used for processing. These continue to be constraints on computer design even to the present day.

 

8.3.2 R

 

IGOROUS

 

 T

 

HEORIES

 

 

 

OF

 

 C

 

ONTROL

 

 

 

AND

 

 I

 

NFORMATION

 

What does von Neumann means by “the rigorous part of information theory is just a different way
of dealing with formal logics [23].” Formal logics are systems of logical variables, the traditional
operators and connectives, and the quantifiers “some” and “all,” and are currently known as first-
order logic [24]. According to von Neumann, “If you have this machinery you can express anything
that is dealt with in mathematics; or that is dealt with in any subject, for that matter, as long as it
is dealt with sharply [23].” The quality of sharpness is reflected in a complete and unambiguous
description. 

It is at this point that von Neumann reveals a major insight in logical representation. He proves
that the McCulloch and Pitts neural net and the Turing machine are equivalent. The neural net is
built up from parts, whereas the Turing machine is based on a “black box” automaton, but both
express the full range of formal logic. Any behavior that can be fully and 

 

unambiguously

 

 described
can be represented in formal logic, a Turing machine, or a McCulloch and Pitts neural net. 

This was an unintended consequence of the work of McCulloch and Pitts. They merely wanted
to axiomatize what they considered the essential features of neuron behavior so that they could
reason about neural structures without endless diversions into neuron physiology. They had no
expectation that a full representation of formal logic could be built up from their axiomatized
neurons. Von Neumann saw the result as potentially profound. Any behavior that could be unam-
biguously described could be implemented on a network of these simplified neurons. From the
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reductionistic perspective, it is supposed that all real-world behaviors can be unambiguously
described. Although von Neumann clearly believed this, he was remarkably reluctant to present it
as a foregone conclusion. He noted that even a seemingly simple concept like triangularity might
lead to an ever-increasing cascade of description.

He expected that beyond a threshold level of complication, a finite neural network would in
some novel way encompass a full description of any concept or behavior, even if the direct
description of the behavior were absurdly large. “They may easily be in this condition already,
where doing a thing is quicker than describing it, where the circuit is more quickly enumerated
than a total description of all its functions in all conceivable conditions [25].” Gödel’s theorem
indicates that for a system of propositions, there exists a true proposition consistent with the system,
but unprovable from the propositions within the system. von Neumann cited Gödel and it is clear
that he saw this unprovable proposition as the novelty that would be abducted by a system that
exceeds the threshold of complication. He admitted to twisting the theorem, but perhaps he twisted
it a bit too much. Gödel’s theorem is not limited to systems of “high complication”; it applies when
the complication passes the rather undemanding level of nontriviality.

von Neumann also sought theoretical justification for his notion of a threshold of complexity
in the Turing machine. “The importance of Turing’s research is just this: that if you construct an
automaton right, then any additional requirements about the automaton can be handled by suffi-
ciently elaborate instructions. This is only true if 

 

A 

 

is sufficiently complicated, if it has reached a
certain minimum level of complexity [26].” Again he misses a key point. There is a threshold of
complexity for the automata portion of a Turing machine below which it will fail to do some things,
but that threshold is 

 

low

 

. The automaton need only be sufficiently complicated encompass the rather
short list of relationships and operators that define formal logic. 

He noted that as long as the automaton is beyond the “certain minimum level of complexity,”
it will perform exactly the same functions as a more complicated automaton, provided its tape
includes a complete and unambiguous description of the more complicated automaton. However,
this function is not to be confused with abduction of novel behavior. A Turing machine is not
merely an automaton; it is an automaton 

 

and

 

 a tape. In the absence of either, the process collapses.
Provided the state set of the simpler automaton captures all the relationships of formal logic, a
Turing machine with an automaton with a sparse state set and a long program on the tape, and
another Turing machine with an automaton with a rich state set and a short program on the tape
might well represent exactly the same information. However, the two configurations represent
nothing but alternative distributions of information between the automaton and the tape; nothing
new has been abducted because one automaton is richer than the other. 

In an addendum to the second lecture, Burks refers to a problem that was obscure in his day,
but is widely known at present, the “halting problem [27].” The problem is this: Given any computer
program as an input data set, does there exist an algorithm that can tell whether the program will
execute to completion and halt, or become caught in an endless loop and execute forever? Clearly
an algorithm to detect endless loops would have enormous practical value in compiler design [28].
This problem is especially perplexing because it cannot even be tested by exhaustive search. If one
tries to test by letting the program run, no matter how long we wait before we intervene to abort
the run, it remains possible that the program only needs an increment longer before it would halt
on its own. Turing proved by contradiction that the halting problem is undecidable. There exists
no proof that the problem can be solved, and there exists no proof that it cannot. 

von Neumann also suspected that he saw emergent complexity of automata in this phenomenon.
“Turing proved that you cannot construct an automaton, which can predict in how many steps
another automaton, which can solve a certain problem will actually solve it [29].” However, all
that the halting problem does is to illustrate Gödel’s theorem. The property of a program to either
halt or loop exclusively is consistent with the propositions implied by the program, but is patently
unprovable from those propositions. There is nothing novel or emergent in this. The property of
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either halting or looping is unconditionally present in any program. The fact that the presence of
the property cannot be uncovered by the techniques of formal logic has no effect on the fact that
it is always present and immutable; it does not suddenly emerge given the right conditions.
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The discussion of abstractions such as the halting problem is typical of the tasks that fall within
the traditional purview of formal logic. “Throughout all modern logic, the only thing that is
important is whether a result can be achieved in a finite number of elementary steps or not. The
size of the number of steps, which are required, on the other hand, is hardly ever a concern of
formal logic. Any finite sequence of correct steps is, as a matter of principle, as good as any other.
It is a matter of no consequence whether the number is small or large, or even so large that it could
not possibly be carried out in a lifetime or in the presumptive lifetime of the stellar universe as we
know it [30].” Clearly, the value of formal logic is in helping to avoid the undertaking of fools’
errands such as attempting to include an “endless loop detector” in a compiler.

However, in practical computer design, there is another problem. Discovering that a problem
is not a fools’ errand, that it indeed has a solution in a finite number of steps, can we estimate that
number? “There are two reasons. First, automata are constructed in order to reach certain results
in certain preassigned durations, or at least in preassigned orders of magnitude of duration. Second,
the componentry employed has in every individual operation a small but nevertheless nonzero
probability of failing. In a sufficiently long chain of operations, the cumulative effect of these
individual probabilities of failure may (if unchecked) reach the order of magnitude of unity at
which point it produces, in effect, complete unreliability [30].” 

It was for these reasons that von Neumann saw the need to go beyond formal logic, or “strict
and rigorous questions of information,” to a generalization of logic that he characterized as “sta-
tistical considerations involving information [31].” “The axioms are not of the form: if 

 

A 

 

and 

 

B

 

happen, 

 

C 

 

will follow. The axioms are always of this variety: if 

 

A 

 

and 

 

B 

 

happen, 

 

C 

 

will follow
with a certain specified probability, 

 

D 

 

will follow with another specified probability, and so on [32].” 
Much of the third lecture is concerned with defending the concept rather than detailing it. He

notes the shortcomings of the “frequency interpretation” of probability theory that was popular in
his time. He mentions that the economist Keynes had devised an axiomatic interpretation of
probability, but did not develop a comprehensive theory of probability as extended logic. “The only
tie to strict logics is that when the probability is one you have an implication, when the probability
is zero you have an exclusion, and when the probability is close to one or close to zero you can
still make those inferences in a less rigorous domain [33].” 

von Neumann did some work on a theory of probability as extended logic. In the 

 

Collected
Works

 

, there is a related paper [34]. In his papers he attempted to identify logical propositions
about physical systems as comments about the outcomes of measurements. He developed an
axiomatic definition of the logic that arises from this paradigm. He then defined a probability
function, which can provide the foundations of “probability logics,” in which “strict logic” is the
degenerate case for probabilities of 1 and 0. He saw probability as an extension or generalization
of formal logic rather than as a discipline that could be reduced to formal logic.

Clearly, he was not satisfied that his insights on probability as extended logic were sufficient
to serve as a foundation for a probabilistic theory of automata. The remainder of the third lecture
was devoted to observations in thermodynamics and information theory that might point the way
to such a theory. He noted that in a thermodynamically closed system, entropy is a measure of how
energy is degraded as it participates in a process. It is found to be proportional to the logarithm of
what is 

 

not known

 

 about the system. By analogy to thermodynamic entropy, information entropy
can be used to measure information in dealing with problems such as the carrying capacity of
telephone circuits.
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That the thermodynamically inspired strategy is useful can be seen in the fact that it shows the
efficacy of digital representation. “Digitalization is just a very clever trick to produce extreme
precision out of poor precision. By writing down 30 binary digits with 30 instruments, each of
which is only good enough that you can distinguish two states of it (with intrinsic errors maybe
on the 10% level), you can represent a number to approximately one part in a billion. The main
virtue of the digital system is that we know no other trick, which can achieve this. From the
information point of view, it is clear that this can be done, because the entropy in 30 binary
instruments is 30 units, and something, which is known to one part in a billion has an entropy of
the logarithm of a billion (to the base two), or about 30 units [35].” 

Although he could point to various rudiments, in both his work and that of others, he noted
that no comprehensive theory of extended logic existed at that point. “I have been trying to justify
the suspicion that a theory of information is needed and that very little of what is needed exists
yet [35].” He anticipated that the new theory would be more based on analysis than counting.
“There is reason to believe that the kind of formal logical machinery we will have to use here will
be closer to ordinary mathematics than present day logics is. Specifically, it will be closer to
analysis, because all axioms are likely to be of a probabilistic and not of a rigorous character. Such
a phenomenon has taken place in the foundations of quantum mechanics [35].” Remarkably, he
thought that the new system of logic would require some sort of context dependency. “It is likely
that you cannot define the function of an automaton, or its efficiency, without characterizing the
milieu in which it works by means of statistical traits like the ones used to characterize a milieu
in thermodynamics. The statistical variables of the automaton’s milieu will, of course, be somewhat
more involved than the standard thermodynamical variable of temperature, but they will probably
be similar in character [35].” 
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The problem that von Neumann faced was daunting. He had a rigorous theory of formal logic that
would protect him from embarking on fools’ errands. He had elements of a statistical theory of
automata that gave him some indication of the limits of what was practically feasible. He was
endowed with a virtually endless supply of 1940s vintage electronic parts. With no more than these
sparse resources, he was undertaking to construct devices orders of magnitude more complicated
than anything ever attempted before. Not surprisingly, he turned to the one additional source of
guidance available to him. How did nature solve the problem of operability in the face of extreme
complication in the design of the nervous system?

It is in no sense a criticism of von Neumann that rather than use his outdated performance
numbers, it is more instructive to use contemporary numbers. Following a bit of sage advice from
von Neumann whose value has not been diminished by the passage of time, modern computer
designs do not use active switching elements for memory; instead, memory is typically provided
by a bank of perhaps 10

 

9 

 

capacitors. A modern microprocessor has on the order of 10

 

8

 

 transistor
switches. In brains, a synapse is triggered by calcium ions to release neurotransmitters [36], and
its switching ability is at least as sophisticated as a transistor in a microprocessor. The conservative
estimate is that there are 10

 

14

 

 synapses in the adult brain [37]. Thus, although the basis for counting
is different from the one used by von Neumann, if we assess complication by his strategy of
counting switching elements, we still get the same answer that he got. “So the human nervous
system is roughly a million times more complicated than these large computing machines [38].”
However, in addition to as many switches as a million Pentium IV microprocessors, the brain has
processes of nonsynaptic diffusion neurotransmission, and glial transmission and interaction
between the glial and neural networks that were completely unknown to von Neumann [21]. 

As von Neumann points out, the rate of neural operations is limited by a fatigue recovery rate.
His observation that if a brain were a computer, then its clock rate would be about 2 

 

×

 

 10

 

2

 

 Hz, is
probably about right. Clock rates of 2 

 

×

 

 10

 

9 

 

Hz are unremarkable in desktop computers. Thus, on
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some level, it is fair to say that a computer is ten million times faster than the brain. In terms of
switching operations per hour, it might be argued that a microprocessor does ten times as many as
a brain. Given the unduplicated cognitive power of the brain, all this shows is that there is much
more happening in brains than the cumulative effect of switching operations.

The differences in size that von Neumann discussed have largely become irrelevant. Synapse
sizes are on the order of one micron [39]. Transistor sizes in microprocessors are on the order of
0.2 

 

µ

 

m. A difference that matters more than size is that the computer has a static morphology and
the brain has a dynamic morphology.

The comparison of energy consumption is also instructive. A typical microprocessor has 10

 

8

 

switches and a clock rate of 10

 

9

 

 Hz. Supposing that every switch operates on every clock tick, it
performs 10

 

17

 

 switching operations per sec. At a typical power consumption of 100 W, it is
consuming 10

 

9

 

 ergs per sec, or 10

 

–8

 

 ergs per switching operation. Assume von Neumann is right
that the brain consumes 25 W, or about one fourth as much as a Pentium IV, and that the brain
does one tenth as many switching operations per second. If so, the brain requires about 2.5 

 

×

 

 10

 

–8

 

ergs per switching operation. Given the informal basis on which the estimate is derived, the energy
per switching operation can be fairly said to be about the same for microprocessors as for brains.
In either case, it is about a million times the energy that von Neumann estimated to be the thermo-
dynamical minimum for a switching operation. However, the more significant fact is that the 25 W
brain is doing much more with its energy than the 100 W computer.

In his discussion of both computers and brains, von Neumann seemed to worry excessively
about the distinction between digital and analog processing. As he notes, both kinds of systems
arguably do both kinds of processing. Analog-to-digital and digital-to-analog conversion are minor
engineering issues; while they may have been a bit less minor in von Neumann’s time, clearly they
were not a fundamental problem even then. He seems to have regarded analog and digital infor-
mation as two fundamentally different kinds of information. “All computing automata fall into two
great classes in a way, which is immediately obvious and, which, as you will see in a moment,
carries over to living organisms. This classification is into analogy and digital machines [40].”
There is a detail that was available to him whose significance he seems to have failed to notice.
There is no fundamental difference between analog and digital data. According to the Shannon
sampling theorem, under band-limited sampling (which is always feasible in principle because all
real-world signals have finite bandwidth), they are two different representations of identically the
same information [41]. 

The other distinction he saw was in the area of robustness. He first attributed the capacity of
both computers and brains to withstand environmental insult to a generic property of soundness of
the constituent materials. “Thus the natural materials have some sort of mechanical stability and
are well balanced with respect to mechanical properties, electrical properties, and reliability require-
ments. Our artificial systems are patchworks in which we achieve desirable electrical traits at the
price of mechanically unsound things [42].” He sees the distinction in robustness as a function of
size, and size as a function of material properties. “And so the differences in size between artificial
and natural automata are probably connected essentially with quite radical differences in materials.” 

Nevertheless he does note that, “if a membrane is damaged it will reconstruct, but if a vacuum
tube develops a short between its grid and cathode it will not reconstruct itself,” The essential idea
is that an organism will spontaneously find a way to work around any local failures of its components.
In that property, he does see a hint of an organizational difference between organisms and simple
mechanisms. “The fact that natural organisms have such a radically different attitude about errors and
behave so differently when an error occurs is probably connected with some other traits of natural
organisms, which are entirely absent from our automata. The ability of a natural organism to survive
in spite of a high incidence of error (which our artificial automata are incapable of) probably requires
a very high flexibility and ability of the automaton to watch itself and reorganize itself [43].” 

In pondering the reason for the robustness of organisms, he notes a property that more recent
observers interpret as the tendency of a living process to act to preserve its identity. Freeman sees
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neural dynamics as entailing a circular causation that leads to internally determined goals and goal-
seeking behavior; he defines intentionality as a behavior that seeks the goal of preserving the
integrity of the hierarchical closed loop of causal entailment [44]. Freeman also sees intentionality
as a necessary condition for intelligent behavior. While necessary, it may not be sufficient. It is
such a necessary consequence of the entailment structure, that Damasio observes it even in organ-
isms without brains. “But the form of an intention is there, nonetheless, expressed by the manner
in which the little creature manages to keep the chemical profile of its internal milieu in balance
while around it, in the environment external to it, all hell may be breaking loose [45].” 

The 

 

intentionality

 

 in Freeman and Damasio is very close to the notion of 

 

autonomy

 

 in von
Neumann. In fact, von Neumann notes an even more remarkable detail, that if the context changes
severely enough, the autonomous process, in the interest of preserving its own identity, might find
it necessary to dispense with some of its functional components. In this connection, it turns out
that each of the functional components has its own identity, and what is in the self-determined self-
interest of the one may no longer be in the self-determined self-interests of the others. “When parts
are autonomous and able to reorganize themselves, when there are several organs each capable of
taking control in an emergency, an antagonistic relation can develop between the parts so that they
are no longer friendly and cooperative. It is quite likely that all these phenomena are connected [43].” 

 

8.4 REEVALUATION OF THE PROBLEMS OF COMPLICATED 
AUTOMATA — PROBLEMS OF HIERARCHY AND EVOLUTION

 

The questions that von Neumann raised in the first four lectures led to some awkward difficulties.
First, there is the issue of complexity as a measure of complication beyond a threshold. Counting
the parts seems like a reasonable measurement strategy, but some parts have more value to the
process than others, and identifying the valuable parts, or even identifying the concept of value,
are ambiguous problems in their own right. Value depends on the end to which the parts add value.
Nevertheless, supposing the problem of measuring complication could be solved, there was another
problem. Formal logic, Turing machines and McCulloch and Pitts neural nets could provably
perform any behavior that could be completely described by a finite list of unambiguous statements.
He recognized that nonambiguity was an absolute necessity for any of the three versions of the
strategy. However, when von Neumann addressed the problem of trying to unambiguously identify
the seemingly straightforward concept of triangularity, he found that it depended on an endlessly
changing context, and that as he considered the necessary qualifying statements, they seemed to
increase without bound. Again, supposing the problem of disambiguation could be solved, formal
logic still remained inadequate to the task of accounting for automatic behavior. He hypothesized
that an extension or generalization of logic was needed, but noted that among its properties, it must
take context dependency into account. This becomes especially crucial in the case of organisms,
because in the face of a changing context they appear to develop self-determined autonomous
behaviors. 

The deeper problem is that the problems of measuring complication, ambiguity, context depen-
dency, and autonomic behavior seem utterly inconsistent with the reductionist paradigm in which
von Neumann was steeped. He was aware of that and perplexed by it. He also thought that he had
an elegant solution that finessed all four problems in a single stroke, and did so within the
reductionist paradigm. He thought that the solution was an automaton whose complication exceeds
a threshold of complexity.

The solution is based on the hypothesis that there exists an automaton whose degree of
complication passes a threshold of complexity, and that in consequence, it is endowed with the
capacity to make other automata like itself, but more complicated than itself. This would eliminate
the problem of complexity as a seemingly ambiguous measure of complication; complexity would
be quality of an automaton that could produce another automaton that contains more information
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than itself. It would do away with the infinite cascade of definition needed to disambiguate even
simple concepts; the complex automaton would be the whole to which the cascade of description
would converge, without the need for writing down the whole cascade. Its capacity for producing
more information than it contains could lead to novel responses to novel changes in context. If that
capacity expanded to the ability abduct enough novelty to preserve itself (or at least its offspring)
in the face of a disruptive environment such a capacity would seem to account for the self-preserving
autonomy observed in organisms.

In the earlier lectures, he indicated that he thought that he could find support for the idea of a
threshold of complexity in the work of Turing and Gödel. There is a threshold implied in the work
of both. However, in both cases, it is a threshold of simplicity rather than a threshold of complexity.
Both a Turing machine, and a logical system that meets the necessary conditions of Gödel’s theorem,
have, at most, the capacity to find all the conclusions deducible from a group of hypothetical
propositions. In effect, they perform the simple function of uncovering the information already
present. The threshold minimum of description that must be inherent in a system to perform this
simple function is nothing more than the minimum amount of description necessary to assure that
the system performs all the operations of formal or first-order logic. As the sparse set of state
transformations in the automaton in the Turing machine indicates, this is not a high threshold of
complexity. As the behavior of the Turing machine indicates, no new information is created. This
threshold of simplicity is nothing like von Neumann’s threshold of complexity, a level of extreme
complication beyond which an automaton creates novel information.

It might be fair to ask if the idea of a threshold of simplicity might perhaps be indicative of a
thresholding principle. If there is a threshold of complication required for an automaton to uncover
old information, might there not be a higher threshold of complication required for an automaton
to abduct new information? It turns out that no such higher threshold exists. The idea is contradicted
by the data processing inequality in information theory. If 
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 form a Markov chain, 
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, then I(
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), or, “no processing of 

 

Y

 

, deterministic or random can increase the
information that 

 

Y

 

 contains about 

 

X

 

.” In other words, “no clever manipulation of the data can
improve the inferences that can be made from the data [46].” 

Although he was probably unaware of a rigorous demonstration of data processing inequality,
von Neumann was intuitively aware of the concept, and the genuine limitations that it imposes.
“So, one gets a very strong impression that complication, or productive potentiality in an organi-
zation, is degenerative, that an organization which synthesizes something is necessarily more
complicated, or of a higher order, than the organization it synthesizes [7].” Although he acknowl-
edged the principle, he believed that it had effect only below a threshold of complication. “We will
stick to automata which we know completely because we made them, either actual artificial
automata or paper automata described by a finite set of logical axioms. It is possible in this domain
to describe automata, which can reproduce themselves. So at least one can show that on the site
where one would expect complication to be degenerative, it is not necessarily degenerative at all,
and, in fact, the production of a more complicated object from a less complicated object is possible.
The conclusion one should draw from this is that complication is degenerative below a certain
minimum level [7].” Above that threshold, the automaton should be generative, and he calls this
the “completely decisive property of complexity [10].” 

The problem is that we have two contradictory claims. The data processing inequality says
unconditionally that we 

 

cannot

 

 improve the inferences that can be made from a set of data. The
essence of von Neumann’s fifth lecture is the demonstration of a proof by construction that there
is a condition under which we 

 

can

 

 improve the inferences that can be made from a set of data. In
the presence of such a conflict, one must consider the premises, including those implied but not
explicitly stated.

As a logician, von Neumann was painfully aware that his premises might lead him astray, and
he saw that defining the premises from which he would start this construction was a major difficulty.
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He called his premises axioms, and called the process of identifying them “axiomatizing the
automaton.” He saw the problem as one of defining the parts of the automaton at just the right
scale, and then forming axioms in terms of the descriptions of the parts. He was rightly concerned
that if he started at too fine a scale, then most of his development would be bogged down in minute
proofs of propositions that could reasonably be treated as intuitively obvious. “We are interested
here in organizational questions about complicated organisms, and not in questions about the
structure of matter or the quantum mechanical background of valency chemistry [47].” He was also
rightly concerned that if he started at too coarse a scale, he would be in effect hypothesizing the
very properties he sought to prove, or in logician’s terms, begging the question. “So, it is clear that
one has to use some common sense criteria about choosing the parts neither too large nor too small
[47].” There is no algorithm for setting the premises; he chooses their scale by common sense.

In fact, this is only the beginning of his application of common sense. “Even if one chooses
the parts in the right order of magnitude, there are many ways of choosing them, none of which
is intrinsically much better than any other [47].” Here he admits the reason that the definition of
his elements must be done on the basis of common sense judgment. Judgment is necessary because
the answer to the question is inherently ambiguous. “Even if the axioms are chosen within the
common sense area, it is usually very difficult to achieve an agreement between two people who
have done this independently [48].” Indeed, he even explicitly admits that the problem is inherently
ambiguous. “So, while the choice of notations, of the elements, is enormously important and
absolutely basic for an application of the axiomatic method, this choice is neither rigorously
justifiable nor humanly unambiguously justifiable. All one can do is to try to submit a system,
which will stand up under common sense criteria [48].” There is one other criterion that a set of
axioms must meet, it must be noncontradictory.

He used a common sense strategy to select his axioms, at a “relative” level in the hierarchy of
logic, rather than trying to derive them as implications of axioms lower in the hierarchy. “I will
give an indication of how one system can be constructed, but I want to emphasize very strongly
how relatively I state this system [48].” 

 

He recognized that the strategy is risky.

 

 “By axiomatizing
automata in this manner, one has thrown half of the problem out the window, and it may be the
more important half.” The “important half” that he might be throwing out the window would be a
proposition that undermines his construction, but that he fails to notice because he started his proof
at too high a relative level.

He begins the construction by postulating a completely artificial milieu in which floats an
unlimited supply of parts, of perhaps a dozen or so different kinds. “We will simply assume that
elementary parts with certain properties exist. The question that one can then hope to answer, or
at least investigate, is: What principles are involved in organizing these elementary parts into
functioning organisms, what are the traits of such organisms, and what are the essential quantitative
characteristics of such organisms? I will discuss the matter entirely from this limited point of view
[48].” Note most crucially that there is nothing in the milieu except the elementary parts, each of
which is exactly described by a complete and unambiguous axiom that permits no variation. This
is an abstract world in which there is no randomness. It is worth noting that von Neumann considered
this detail to be crucial. In subsequent models of the self-replication, he strengthens this requirement,
postulating “much more rigid determinations as to what constitutes an automaton, namely the
imposition of what is best described as a crystalline regularity” [49]. 

Also, found in this milieu are assorted specimens of φ(X), an object implementing a chain of
binary code that is a complete and unambiguous description of automaton X, another object floating
in the milieu. von Neumann introduces the notion of a separate φ(X) for the perfectly legitimate
reason he does not want the description of his universal constructor to get sidetracked into irrelevant
and nonilluminating details of how the universal constructor abstracts φ(X) from X. He simplifies
his description of the universal constructor, with no loss in its replicative power, by eliminating
the abstraction function, and instead postulating that for every X in the milieu there is a φ(X).
However, because φ(X) is strictly an artifact of the replication process, there are no floating
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abstractions of objects, not in the milieu. This is a crucial point; there are no φ(X) chains in the
milieu except those that correspond to actual objects, X, already in the milieu. “All this design is
laborious, but it is not difficult in principle, for it’s a succession of steps in formal logics. It is not
qualitatively different from the type of argumentation with which Turing constructed his universal
automaton [50].” φ(X) is a chain of code that constitutes a complete and unambiguous description
of automaton X. Notice that by his description he implicitly disallows randomness in the production
of the chain. Being a succession of steps in formal logics, φ(X) has probability = 1 of being the
description of X. 

Into this milieu he introduces the universal constructor, consisting of three components A, B,
and C. A is a universal machine tool, which devours a copy of φ(X) and while doing so constructs
X from the parts floating in the milieu. He says that this process is a succession of unambiguous
steps in formal logic. B is a duplicator, which devours a copy of φ(X) and while doing so constructs
two new copies of φ(X). These two steps add nothing new. A produces X given φ(X), but X is no
more complex than its complete model. B produces two copies of φ(X) given one copy of φ(X) but
two copies of φ(X) is no more complex than one copy. Next he adds a control automaton, C, to A
+ B. C actuates A or B according to a pattern. Step 1: C causes B to duplicate φ(X). Step 2: C
causes A to make X and consume one copy of φ(X). Step 3: C ties φ(X) to X, and separates φ(X) +
X from (A + B + C). The result is two entities, the universal constructor (A + B + C) and a new
entity φ(X) + X, where the new X is an exact duplicate of some other object X in the milieu [51]. 

He then shows that substituting A + B + C for X in φ(X) produces a perfectly legitimate recursive
algorithm. To operate the algorithm, start with universal constructor (A + B + C). To this is attached
a complete description of itself φ(A + B + C), leading to (A + B + C) + φ(A + B + C). C causes B
to copy f. At the end of this step we have (A + B + C) + φ(A + B + C) + φ(A + B + C). C causes
A to make a copy of (A + B + C) given one of the two copies of φ(A + B + C) and parts from the
milieu. At the end of this step, we have (A + B + C) + (A + B + C) + φ(A + B + C). Then C cuts
the (A + B + C) + φ(A + B + C) loose from the agglomeration thus resulting in two distinct entities,
(A + B + C) and (A + B + C) + φ(A + B + C). Thus, the universal constructor has reproduced itself,
with neither loss, nor gain, in complexity [51]. 

As a step toward producing increased complexity, he postulates an automaton D that can be
temporarily tacked onto the universal constructor (A + B + C), just long enough to generate a copy
of φ(A + B + C + D). Then (A + B + C) + φ(X) where X → A + B + C + D makes a new specimen
of (A + B + C + D) + φ(A + B + C + D). This has still not added complexity to the system. The
original A + B + C and the floating D have exactly the same complexity whether tacked together
or not, and producing an extra copy of A + B + C + D adds no complexity to what existed before [8]. 

von Neumann acknowledges that the foregoing process is no more complex than crystal growth,
and it is not at all the thing that he is really after. To progress from exact duplication to complexity,
in this context the construction of a thing that has never existed before, the description φ(A + B +
C + D) must somehow morph into φ(A + B + C + D′), where D′ is an object that has never existed
before. Run this new description through the universal constructor, and you have created a new
thing as a result. A + B + C + D′ is an object that never existed before [52]. 

At this point the construction collapses. He provides no means of obtaining φ(A + B + C +
D′), given φ(A + B + C + D). For D′ to arise, von Neumann suggests that we need a “random
change of one element [8].” By postulating an axiom of randomness just at the moment that he
needs it, he has temporarily forgotten that he has already forbidden it as a consequence of his prior
axioms. In order to obtain exact replication, all descriptions, φ(X), are complete and unambiguous;
they are the result of a succession of steps in formal logic. Consequently, all processes, X, are
completely determined, and not subject to random behavior. The only way of obtaining φ(X) is by
observation of X. There is no process for modifying φ(X). To implicitly include an additional
postulate, that φ(X) can fluctuate randomly, contradicts the initial postulate of complete and unam-
biguous determination of φ(X) that is necessary to assure the stability of the universal constructor,
and which von Neumann strengthens to “crystalline regularity” in subsequent models.
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Stated simply, in order for the universal constructor to demonstrate a threshold of complication
beyond which “the production of a more complicated object from a less complicated object is
possible,” it must reside in a milieu that simultaneously forbids and requires random occurrences.
The universal constructor does not provide an exception to the data processing inequality. It
contradicts the data processing inequality. One of the reasons for this incoherence is that the
universal constructor is based on contradictory axioms. Von Neumann’s own concern is confirmed.
He did throw the more important half of the problem out the window. From the ambiguous range
of possibilities available to him, he chose his axioms in such a way as to imply a fatal but difficult-
to-notice flaw in his development. As a consequence of the data processing inequality, there is no
axiomatization that he could have chosen that would have led to an automaton that would produce
an automaton more complicated than itself.

8.5 THE 29-STATE AUTOMATON

8.5.1 CLEARING UP SOME CONFUSION

In making sense of von Neumann’s subsequent work, there are several logical details that must be
appreciated. First, in a noiseless ambience, a complete and unambiguous list of descriptors and a
static object described by the list are equivalent; they are two different objects representing exactly
the same information. In this context, “static” includes the property of emulating “dynamics” by
ratcheting through a succession of static states. 

This equivalence answers a question that is relevant to the discussion of von Neumann’s
subsequent models. Can an automaton reside within another automaton? Recall that in von Neu-
mann’s development, an automaton is not an ontological object, but rather a simplified epistemo-
logical description of certain properties of certain objects. In the development of Turing’s universal
computer, von Neumann notes that essentially, a simple automaton could emulate in every detail
the behavior of a complicated automaton running a program on its own tape, provided the simple
automaton has a longer tape that includes a complete and unambiguous description of the more
complicated automaton and its program. In principle, there is no reason that multiple layers of such
automata could not be nested. The only condition is that the simplest automaton, the one at the
bottom of the nesting hierarchy, meets the undemanding requirement of having a rich enough state
set to capture all the operations of first-order logic. Beyond that minimal limit, the only difference
in principle between rich and poor computers is the amount of description. Whether the description
in the state set of the automaton or in the data on the tape is irrelevant. By analogy with Turing
machines, von Neumann legitimately justifies the nesting of one automaton within another [53]. 

A fundamentally more important detail is that, as a consequence of the data processing ine-
quality, no amount of processing of an unambiguous list of descriptors by an automaton will add
information to the list. To appreciate what that means, suppose there exists an object X′ and that
object X is X′ with some of its parts missing. Suppose that Y is a complete and unambiguous
description of X. It follows that Y is also an unambiguous, albeit incomplete, description of X′.
Suppose that Z is an automaton that can process Y. In the Markov chain, X → Y → Z, no amount
of manipulation of description Y by automaton Z will increase the amount of information in Y about
X; this is trivially true because Y is a priori, the complete description of X. More significantly, in
the Markov chain, X′ → Y → Z, where Y is an incomplete description of X′, no amount of
manipulation of description Y by automaton Z will increase the amount of information in Y about
X′; this is a nontrivial consequence of the data processing inequality. This is what is meant by the
expression I(X′;Y|Z) ≤ I(X′;Y), or the amount of information in Y about X′ after Y is processed by
Z is less than or equal to the amount of information in Y about X′ with no such processing. 

Contrast this with the claim made by von Neumann about the threshold of complexity. His D
is equivalent to X in the Markov chain development. His φ(D) is equivalent to the Y in the Markov
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chain development. His A + B + C is equivalent to the Z in the Markov chain development. We
can also think of D′ as an enriched version D, in von Neumann’s development or X′ as an enriched
version X, in the Markov chain development. However, in his subsequent models of self-replicating
automata, he considers replicative and generative capacities to be properties of the same kind. His
claim is that the signature of complexity, expressed in information theoretic notation, becomes
I(X′;Y|Z) ≥ I(X′;Y).

Note the crucial error in the placement of the equality. In the world of unambiguous automata,
the equality I(X′;Y|Z) = I(X′;Y) does not represent a process that is simple in some contexts and
complex in others. In equating exact self-replication with crystal growth, von Neumann admitted
this very point. Consistent with the data processing inequality, I(X′;Y|Z) ≤ I(X′;Y), the equality
I(X′;Y|Z) = I(X′;Y) is a signature of simplicity and not complexity. If one ignores the contradiction
in von Neumann’s development, and suppose as he did, that the “completely decisive property of
complexity” is the capacity for an automaton to be generative (as opposed to being merely exactly
replicative), then the information theoretic signature of complexity would be I(X′;Y|Z) > (X′;Y),
without the equality.

8.5.2 FIVE QUESTIONS AND FIVE MODELS

As a general principle of scientific inquiry, posing questions is actually far more difficult than
answering them. It was in this realm that von Neumann was outstanding. Von Neumann posed five
questions that he regarded as central to a theory of automata. People are still trying to answer some
of them to this day.

1. “Logical universality. When is a class of automata logically universal, i.e., able to perform
all those logical operations that are at all performable with finite (but arbitrarily extensive)
means?”

2. “Constructibility. Can any automaton be constructed, i.e., assembled and built from
appropriately defined ‘raw materials,’ by another automaton?”

3. “Construction-universality.” Can any automaton construct “every other automaton?”
4. “Self-reproduction.” “Can any automaton construct other automata that are exactly like it?”
5. “Evolution.” “Can the construction of automata by automata progress from simpler types

to increasingly complicated types [49]?” 

He showed that the Universal Turing Machine provided the answer to question (1). Regarding
the next three questions he said, “We will establish affirmative answers to questions (2) to (4) as
well.” Then he makes what is probably the most remarkable comment to be found anywhere in his
work. “An important limitation to the relevance of a similar answer to question (5) lies in the need
for a more unambiguous formulation of the question.” After having said in the fifth lecture that he
regards an affirmative answer to question (5) to be the “completely decisive property of complexity,”
his subsequent models did not even address the question. What is most remarkable is his reason
for not making the attempt. Although he failed to notice the specific contradiction in his development
in the fifth lecture, he did see what lay at the heart of the difficulty. He could not find a way to
unambiguously pose the question. He also recognized the need to strengthen his axioms forbidding
randomness. “In addition, we will be able to treat questions (1) to (5) in this sense with much more
rigid determinations as to what constitutes an automaton, namely with the imposition of what is
best described as a crystalline regularity [54].” 

To answer these five questions, he proposed five models, any one of which should be able to
demonstrate answers to all five questions. The kinematic model is the automaton he described in
the fifth lecture. “The kinematic model deals with the geometric–kinematic problems of movement,
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contact, positioning, fusing, and cutting, but ignores problems of force and energy [55].” The most
notable model was the cellular model, or the 29-state automaton. As a further refinement, he also
proposed the excitation-threshold-fatigue model. “von Neumann’s idea was to construct this 29-state
automaton out of a neuron-like element, which had a fatigue mechanism as well as a threshold
[56].” “The fourth model of self-reproduction, which von Neumann considered was a continuous
model. He planned to base this on a system of nonlinear partial differential equations of the type,
which governs diffusion processes in a fluid [57].” He also proposed a probabilistic model.

It might be wondered if the probabilistic model might demonstrate a property of the evolution
of increasing complexity. At first glance, this might appear to solve the problem. Unlike the
kinematic model it would not simultaneously prohibit and require randomness in the process. Nor
would the “crystalline regularity” of the other three models be permitted. However, von Neumann
never actually produced the probabilistic model, and thus its properties cannot be explored. Even
if he had, it is unlikely that it would have had the creative property such as he claimed for the
kinematic model. The data processing inequality, I(X;Y|Z) ≤ I(X;Y), applies whether the processor
Z is random or deterministic [46]. 

8.5.3 IMPLEMENTATION

von Neumann was interested in testing his ideas. He wanted an implementable version of his self-
reproducing automaton. Clearly, the kinematic model was unfeasible to implement in the hardware
available from 1940s technology, and remains unimplementable even today. However, it is imaginable
that it might be feasible to implement in nanotechnology in a few decades in the future. Nevertheless,
even if it is implemented, it will not make copies of automata more complicated than the inputs
fed into it. The basis on which von Neumann predicted that it would do so is patently contradictory,
and such behavior violates the data processing inequality.

The latter three models are also unavailable. von Neumann only left rough guidelines for how
he would approach them. He died before he could do more. 

He also failed to complete the 29-state model before his death. However, he left enough design
details that others were able to complete the work. It has been implemented both as a program on
other computers, and in dedicated hardware [58–60]. 

The scheme is actually a nested three-level cellular automaton. The milieu, or the automaton
that provides the nest for the other levels, is an infinite two-dimensional array of cells. Within that
largest automaton resides a large but finite automaton, originally envisioned as a collection of
approximately 300,000 of the cells of the nesting automaton. These cells form self-replicating
automaton, consisting of the computing unit (a rectangular box of approximately 32,000 cells) and
the tape unit (a one-dimensional tail extending rightward from the lower right-hand corner of the
box, and consisting of something over 200,000 cells). Also, at that same nesting level resides any
offspring that the automaton might produce. Each of the 300,000 or so cells of each self-replicating
automaton cells contains a 29-state finite state machine. (For that matter, each of the infinitude of
cells contains a 29-state finite state machine. However, except for those used in the self-replicating
automaton, all are in an “unexcitable” state.)

The automaton replicates in the following manner. From available cells in the milieu, it forms
(i.e., by activating the quiescent finite state machine in the cell) a construction arm as an extension
of itself reaching rightward from its upper right-hand corner. The construction arm then converts
cells in the milieu into a copy of then computing unit, and then the tape. Then it activates the child
automaton, which has remained inactive during construction. Then it withdraws and dissolves the
constructing arm [61]. The result is two identical copies of the original self-replicating automaton.

Much of the second half of Theory of Self-Reproducing Automata is devoted to proving the
following claim. “We now reformulate questions (1) to (4) so they apply to von Neumann’s 29-state
cellular structure, at the same time modifying them somewhat. 
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1. Logical universality: Can an initially quiescent automaton, which performs the compu-
tations of a universal Turing machine, be embedded in von Neumann’s 29-state cellular
structure? 

2. Constructibility: Can an automaton be constructed by another automaton within von
Neumann’s 29-state cellular structure

3. Construction-universality: Can there be embedded in von Neumann’s 29-state cellular
structure a universal constructor Mc with this property: for each initially quiescent
automaton M, there is a coded description D (M) of M such that, when D (M) is placed
on a tape L attached to Mc, Mc will construct M? 

4. Self-reproduction:
4.1. Can a self-reproducing automaton be embedded in von Neumann’s 29-state cellular

structure?
4.2. Can there be embedded in von Neumann’s 29-state cellular structure an automaton,

which can perform the computations of a universal Turing machine and can also
reproduce itself?

All these questions are answered affirmatively in the present work [62].” 
It is significant that the 29-state automaton differs substantially from the proliferation of toy

programs that make copies of themselves. It also incidentally implements a Universal Turing
Machine. As such, it can do anything that can be completely and unambiguously described. It does
not merely consume resources and spawn. It does work.

It is also significant that it is fully compliant with the data processing inequality, I(X;Y|Z) ≤
I(X;Y). The 29-state automaton is characterized by I(X;Y|Z) = I(X;Y), producing an exact copy of
whatever is completely and unambiguously described to it, and nothing more complicated. As such
it is completely lacking in the capacity to abduct novelty, the property that von Neumann calls
“completely decisive property of complexity.” The 29-state automaton is nondescriptive of the
biological paradigm of evolution. 

It might be objected that the proliferation of offspring in the milieu is evolution of a kind; the
milieu is an automaton, and it is evolving. However, as von Neumann noted, “the juxtaposition of
two copies of the same thing is in no sense of higher order than the thing itself [51].” In other
words, two identical copies of the same automaton reflect the same degree of complication as one
copy, likewise for a pair of pairs of copies, and so on. As von Neumann identifies complication, a
milieu containing any finite number of identical copies of the self-reproducing automaton has the
same degree of complication as a milieu that contains only one. In a superficial sense, the milieu
is evolving, but its complication stays fixed.

In contrast, the similarity between the process of implementing the 29-state automaton and
Special Creation is inescapable. von Neumann himself characterized the appearance of life in a
lifeless milieu as a miracle. “That they should occur in the world at all is a miracle of the first
magnitude; the only thing which removes, or mitigates, this miracle is that they reproduce them-
selves [63].” The starting configuration, or configuration of states that cannot be reached from any
other configuration of the system by the operation of the automaton, is called the “Garden-of-Eden
configuration [64].” The 29-state automaton is created by an external agent who uses the resources
within the milieu to create the system in an inanimate form, and animates it subsequently. “And
the Lord God formed man of the dust of the ground, and breathed into his nostrils the breath of
life; and man became a living soul” (Genesis 2:7). The 29-state automaton, being a Universal Turing
Machine, is designed to earn its keep. “And the LORD God took the man, and put him into the
garden of Eden to dress it and keep it” (Genesis 2:15). Everything in the milieu (i.e., the set of all
the cells in an unexcitable state) is available to the 29-state automaton to make copies of itself
without limit. “And God blessed them, and God said unto them, Be fruitful and multiply, and
replenish the earth, and subdue it: and have dominion over the fish of the sea, and over the fowl
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of the air, and over every living thing that moveth upon the earth” (Genesis 1:28). When the self-
replicating automaton replicates, it makes copies just like itself. “And God created great whales,
and every living creature that moveth, which the waters brought forth abundantly, after their kind,
and every winged fowl after his kind: and God saw that it was good (Genesis 1:21).

This is meant neither to denigrate von Neumann nor to defend Creationism. The point is that
anyone looking for either a mathematical description or a philosophical defense of biological
evolution will not find it in the 29-state automaton. The 29-state automaton is neither a computa-
tional theory of mind, nor a computational theory of life, nor even a computational theory of
complexity. It is a computational theory for guiding the realization of computers.

8.6 PRESUPPOSITIONS AND INSIGHTS

8.6.1 THE OBJECTIVE

The objective of von Neumann’s work, a “theory of automata,” was that it would describe both
computers and brains [65]. The scope of automata theory was to include the structure and organi-
zation of natural and artificial systems, the role of language and information in both kinds of
systems, and the principles of programming and control of both kinds of systems [66]. The big
problems limiting the capabilities of computers in von Neumann’s time were (1) component size,
(2) reliable systems from unreliable components, and (3) the lack of a theoretical principle of
computation to guide the design. The first problem has turned out to be more an issue of technology
than principle. The second problem requires a principle by which the reliability of the whole exceeds
the reliability of the parts. Nature seemed to solve this problem by a process of self-repair in the
face of a hostile ambience. The third problem requires a coherent concept of complexity. The idea
of a self-replicator that can evolve into something more complicated than itself might serve as a
foundation in principle to deal with both problems. 

Although von Neumann was steeped in the tradition of reductionism, and the principles of
reductionism guided his attempt to characterize complexity, he was capable of looking beyond its
limitations. Although the discussion of telos or purposeful behavior is excluded from reductionism,
and was virtually never discussed in von Neumann’s time, he could not disregard its existence.
“There is a concept which will be quite useful here, of which we have a certain intuitive idea, but
which is vague, unscientific, and imperfect. This concept clearly belongs to the subject of infor-
mation, and quasithermodynamical considerations are relevant to it. I know no adequate name for
it, but it is best described by calling it ‘complication.’ It is effectivity in complication, or the
potentiality to do things. I am not thinking about how involved the object is, but how involved its
purposive operations are [65].” 

von Neumann’s other key presupposition was the notion that natural phenomena are automata,
or in other places in his writings, that they could be adequately characterized as automata. He
assumed that engineering systems such as communications networks and natural processes such
as nervous systems are qualitatively organized the same way. “Automata theory clearly overlaps
communications and control engineering on one hand, and biology on the other. In fact, artificial
and natural automata are so broadly defined that one can legitimately wonder what keeps automata
theory from embracing both these subjects. von Neumann never discussed this question, but there
are limits to automata theory implicit in what he said [65].” Burks, commenting on von Neumann,
sees the presupposition as true by definition. He wonders how it could be otherwise. However, it
must be appreciated that this is a presupposition and not a conclusion of von Neumann’s work.

8.6.2 AMBIGUITY 

One of the major conceptual points in von Neumann’s work on automata is the demonstration that
formal logic, the Turing machine, the McCulloch, and Pitts neural network are essentially three
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different versions of the same concept. Any proposition that could be proved by unambiguous
application of formal logic could be proved by a Turing machine or a McCulloch and Pitts neural
network. von Neumann saw this as having a profound implication. “It proves that anything that
can be exhaustively and unambiguously described, anything that can be completely and unambig-
uously put into words, is ipso facto realizable by a suitable finite neural network. Because the
converse statement is obvious, we can therefore say that there is no difference between the
possibility of describing a real or imagined mode of behavior completely and unambiguously in
words, and the possibility of realizing it by a finite formal neural network. The two concepts are
coextensive [67].” 

Of course, this leads to another problem. “A difficulty of principle embodying any mode of
behavior in such a network can exist only if we are also unable to describe that behavior completely
[67].” As remains the conventional wisdom to the present day, von Neumann recognized that the
problem of disambiguation is thorny, but supposed that it was tractable. “This description may be
lengthy, but it is always possible. To deny it would amount to adhering to a form of logical
mysticism, which is surely far from most of us. It is, however, an important limitation, that this
applies only to every element separately, and it is far from clear how it will apply to the entire
syndrome of behavior [67].” In other words, there are elements whose ambiguity would imply
logical mysticism. On the other hand, when he tries to disambiguate the seemingly straightforward
concept of triangularity, the more disambiguating statements he makes, the more ambiguities flow
from them. “We may have a vague and uncomfortable feeling that a complete catalogue along such
lines would not only be exceedingly long, but also unavoidably indefinite at its boundaries. Never-
theless, this may be a possible operation [67].” At the beginning of the paragraph, he saw disambig-
uation as “always possible”; by the end he comes to the chilling awareness that the problem is
potentially intractable, and can promise no more than the hope that a solution may be possible.

This was not the only instance in which von Neumann found inherent ambiguity to be a major
difficulty. In the development of the kinematic model, he was very concerned over the issue of
choosing his axioms. “There is in formal logics a very similar difficulty, that the whole system
requires an agreement on axioms, and that there are no rigorous rules on how axioms should be
chosen, just the common sense rules that one would like to get the system one is interested in and
would not like to state in his axioms either things, which are really terminal theorems of his theory
or things, which belong to vastly anterior fields [47].” Why should axiomatization be so difficult?
“So, while the choice of notations, of the elements, is enormously important and absolutely basic
for an application of the axiomatic method, this choice is neither rigorously justifiable nor humanly
unambiguously justifiable [48].” He himself has identified a process that is inherently ambiguous,
but is in no sense mystical. As many other logicians have done, von Neumann admits that the
foundation of logic itself is inherently ambiguous.

Remarkably, he saw that the ambiguity arose from context dependency. The same proposition
might be true in one context and false in another. “I mention this because when you consider
automata whose normal function is to synthesize other automata from elementary parts (living
organisms and such familiar artificial automata as machine tools), you find the following remarkable
thing. There are two states of mind, in each of which one can put himself in a minute, and in each
of which we feel that a certain statement is obvious. But each of these two statements is the opposite
or negation of the other [63]!” Although he does not mention it, one is tempted to wonder if von
Neumann was familiar with the Austin’s context-dependent theory of truth [68]. One reason that
the problem of disambiguation is not generally tractable is that if the truth of a proposition is
context dependent, and if the context can vary without limit, then the necessity for disambiguating
statements grows without limit, just as von Neumann found in his discussion of triangularity.

Ambiguity had a major impact on von Neumann’s later work. In the kinematic model he was
interested in the problems of self-reproduction, and the reproduction of offspring more complicated
than the parent. In the 29-state model he focused on the problem of self-reproduction, and ignored
the reproduction of offspring more complicated than the parent. He did so despite the fact that he
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considered this property to be the completely decisive property of complexity. Why did he leave
the completely decisive property out of the 29-state automaton? He could not find an unambiguous
formulation of the problem [49]. 

8.6.3 IMPREDICATIVITY

Although von Neumann showed that the Turing machine, the McCulloch, and Pitts neural network
are essentially three different versions of the same concept, there was one exception. Both the
Turing machine and neural network have a sequential property not present in formal logic. The
sequential character of these two constructs implicitly bans the impredicativity that can arise in
logic, and von Neumann considered himself well rid of it. “It prevents the occurrence of various
kinds of more or less overt vicious circles (related to ‘nonconstructivity,’ ‘impredicativity,’ and the
like, which represent a major class of dangers in modern logical systems [69].” At various places
in his work he is at pains to explain why it does not lead to vicious circles.

Remarkably, despite his disavowal of impredicativity, von Neumann did reason impredicatively
when he could not avoid it. This is most apparent in the strategy that he adopted in axiomatizing
his models. He notes that the choice of axioms “is neither rigorously justifiable nor humanly
unambiguously justifiable. All one can do is to try to submit a system, which will stand up under
common sense criteria. I will give an indication of how one system can be constructed, but I want
to emphasize very strongly how relatively I state this system [48].” The impredicativity is seen in
the mutual dependency between the axioms and conclusions. He subjectively hypothesizes a set
of axioms that seem sensible, and draws a conclusion from the axioms. Being unsatisfied with the
conclusion, he subjectively modifies the axioms in the hope of reaching a more satisfying conclu-
sion. He continues the process until the combination feels about right. The process has deductive
rigor, but only in the fact that the current conclusion follows rigorously from the current axioms.
If he later develops a bad feeling, he might once again change both the axioms and the conclusion
to something that seems more satisfactory. This is exactly what von Neumann did in going from
the axioms that led to of the unrealizable kinematic model to the crystalline regularity of the 29-state
model, and deciding to do so at the cost of the capacity of the automaton to produce offspring
more complicated than itself.

Again, this was not the only instance in which von Neumann saw that impredicativity is
indispensable to creative reasoning. Even more remarkably, he sees an analog to the process in
autocatalysis. Also, he sees the big drawback, it depends on individual genius. “In pure mathematics,
the really powerful methods are only effective when one already has some intuitive connection, with
the subject, when one already has, before a proof has been carried out, some intuitive insight, some
expectation, which, in a majority of cases, proves to be right. In this case, one is already ahead of
the game and suspects the direction in which the result lies. A very great difficulty in any new kind
of mathematics is that there is a vicious circle: You are at a terrible disadvantage in applying the
proper pure mathematical methods unless you already have a reasonably intuitive heuristic relation
to the subject and unless you have had some substantive mathematical successes in it already. In
the early stages of any discipline, this is an enormous difficulty; progress has an autocatalytic
feature. This difficulty may be overcome by some exceptionally lucky or exceptionally ingenious
performance, but there are several outstanding instances where this has failed to happen for two,
three, or four generations [70].” 

8.6.4 PROBABILITY

von Neumann’s skills at problem identification are perhaps best demonstrated in description of the
new form of logic that he thought was necessary to understand computational reliability and brain
function. “The axioms are not of the form: if A and B happen, C will follow. The axioms are always
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of this variety: if A and B happen, C will follow with a certain specified probability, D will follow
with another specified probability, and so on [32].” It would be an alternative to the “frequency
interpretation.” “Strict logic” is the degenerate case for probabilities of 1 and 0. It would be
generalization of formal logic rather than as a discipline that could be reduced to formal logic. It
would be information-theoretic, and largely inspired by the analogy between thermodynamic
entropy and information. It would be based on analysis rather than counting.

Had he lived a normal lifetime, he would have witnessed the development of just such a theory.
Jaynes was concerned with slightly different issues that von Neumann. How do we prevent our
reasoning from becoming confused by hidden assumptions? How do we use what we already know
to maximum advantage? Can we reason without getting hopelessly bogged down in irrelevancies?
To keep our thinking clear, we must keep the proper perspective on both our need and capacity to
make decisions on the basis of incomplete information. “We are hardly able to get through one
waking hour without facing some situation (e.g., will it rain or won’t it?) where we do not have
enough information to permit deductive reasoning; but still we must decide immediately what to
do [71].” Jaynes says that we reach such necessary but partially informed decisions by plausible
reasoning. 

Most crucially, he sees the proper role of probability as a tool for facilitating the process. He
starts with three desiderata of plausible reasoning: (1) degree of plausibility is represented by an
irrational number. (2) Plausible reasoning should correspond qualitatively to common sense. (3) It
should be consistent. From these desiderata he derives the principles of probability theory. Speaking
of the quantities p, in his calculations, he says, “They define a particular scale on which degrees
of plausibility can be measured.” In other words, a probability is a measure of what we know [72]. 

Plausible reasoning is a generalization of logic. He notes that “Aristotelian deductive logic is
the limiting form of our rules for plausible reasoning [73].” That limit is complete information. In
the absence of complete information, plausible reasoning served as an algorithm for making the
best possible guess with whatever information is available. 

For simple problems, he gets the same formulas as arise from counting balls in urns. However,
how he arrived at those formulas was significantly different; it was not based on counting ontological
events. “The important new feature was that these rules were now seen as uniquely valid principles
of logic in general, making no reference to “chance” or “random variables [74].” 

Jaynes’ theory of “Probability as Extended Logic,” began to be developed shortly after Shan-
non’s discoveries in information theory and was published in a substantially complete form in the
1980s. Remarkably, it meets all of von Neumann’s conditions for a probabilistic logic. As an
interpretation of probability, it is more general than previous interpretations; the frequency and
Bayesian interpretations are degenerate cases of this more general theory. As a theory of logic, it
is more general than formal logic, which turns out to be the degenerate case for probabilities of
1 and 0. It is based on analysis rather than counting. It is information-theoretic, and thermodynam-
ically inspired. The underlying principle is entropy maximization.

The theory of probability of extended logic affords a strategy for guiding the decision of what
to do next in the face of incomplete information. This has a consequence that is considered quite
radical by many. It is epistemological; it interprets probability as a measure of our ignorance of a
phenomenon. In contrast, the “frequency interpretation” is ontological; it interprets probability as
a measure of the tendency of a process in reality to gyrate in an uncaused manner. Importantly,
probability of extended logic does not specifically forbid the occurrence of such “random processes.”
However, it does make the point that most of our uses of probability are for estimating outcomes
that are causally determined, but whose causes are unknown to us. In such cases, we are tempted
to interpret our ignorance of the cause of a phenomenon as inherent randomness of the phenomenon.
That error is reinforced by the fact that if we use the model of randomness to make guesses about
what to do next with a phenomenon whose causes we do not understand, the guesses often turn
out to be correct.
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von Neumann was neither ignorant of nor hostile to the interpretation of probability as a measure
of what we do not know about a determined phenomenon. He sees this very problem in the
cumulative rounding error that arises due to fixed word length in a computer. “This error is, of
course, not a random variable like the noise in an analogy machine. It is, arithmetically, completely
determined in every particular instance. Yet its mode of determination is so complicated, and its
variations throughout the number of instances of its occurrence in a problem so irregular, that it
usually can be treated to a high degree of approximation as a random variable [66].” He does
consider this to be a legitimate, albeit pathological, use of probability theory. 

Where Jaynes radically departs from von Neumann is precisely in this interpretation. Jaynes
sees the use of probability to account for our ignorance of a determined situation as the norm, and
not the pathological exception. If there is pathology, perhaps it is the occurrence of ontological
noise, or a genuine random process in reality.

A result of probability as extended logic that was anticipated by neither Jaynes nor von Neumann
is that it gives us a new insight into impredicativity and ambiguity. Impredicativity is not precluded
by formal logic. As with all the logicians of his time, von Neumann saw it as a dangerous pitfall
that could easily lead to paradox. What he did not realize was that the paradoxes could be precluded
by a proper axiomatization. He would still have considered such axiomatization to be practically
useless because the resulting logic is inherently ambiguous.

Nevertheless, von Neumann was able to see that some situations are ether inherently ambiguous,
or at least hopelessly impossible to disambiguate. Although he wished he could deny the existence
of ambiguity in real-world situations, he knew it when he saw it, and proceeded as best he could
in the face of it. What he failed to appreciate was that a logic that includes inherent ambiguity
might serve as an effective model of processes whose causal structures inherently entail ambiguous
behaviors. In one situation, the process would produce one outcome, and in another virtually
identical situation it would produce another. In either case, the outcome is fully determined by the
causes that led to it, but no matter how much we know about those causes, we would not be able
to predict the outcome with certainty [75]. Impredicativity can provide an ambiguous epistemo-
logical model of an ambiguous ontological situation; we can gain insight about the one by asking
questions about the other. Where probability as extended logic can give us a new insight into both
ontological and epistemological ambiguity is that it can serve as an auxiliary model that it allows
us to make informed guesses about an entailed situation, when the entailments do not give us
enough information to give a complete description of the situation, as would always be the case if
the entailments are inherently ambiguous. 

8.6.5 COMPUTERS VS. BRAINS

From this perspective on ambiguity, impredicativity, and probability, we have the background to
make an informed evaluation of von Neumann’s about the differences in principle between the
computer and the brain. It must first be recognized that von Neumann’s comparison of size and
energy requirements of neurons and computing elements were really issues of enabling technology
rather than fundamental organizing principle. He also considered system organization. “These
differences influence the organization of the system: natural automata are more parallel in operation,
digital computers more serial [76].” However, this turns out not to be a difference in principle. Any
parallel computing process can be converted to a serial process [77]. In addition, in parallel
processing, while the number of processors grows linearly, the amount of interprocess communi-
cations grows combinatorially, and the interprocess communications can actually slow the overall
process down as more processors are added [78]. 

Although von Neumann hoped that parallel architecture would solve the problem that he called
“logical depth,” he was aware that the brain probably solved the problem some other way. “Logical
depth” is the number of sequential operations that are required to obtain a particular result. He
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considers large “logical depth” to be bad because each step has a probability of error, and, except
in unusual cases, these accumulate from step to step. He is concerned that the feedback in analog
biological neural circuits may be especially bad about amplifying such errors, and wonders how
the process can produce any useful results. In accounting for this conundrum, he forms a most
remarkable hypothesis. “‘Depth’ introduced by feedback in the human brain may be overcome by
some kind of self-stabilization [79].” 

He also saw that more than internal stability is required. Brains differ from computers in having
active repair processes. “The very design and construction of such large automata would result in
many mistakes. Moreover, the large number of components would result in a very short mean free
path between errors and make localization of failures too difficult. Natural automata are clearly
superior to artificial ones in this regard, for they have strong powers of self-diagnosis and self-
repair [80].” 

Given these two properties, stability of some unusual character, and self-repair, it is surprising
that he held on to a presupposition for which he had no real justification. He presumed that the
brain possesses a static architecture. “It is true, that the animal nervous systems too, obey some
rigid ‘architectural’ patterns in their large-scale construction, and those variations that make one
suspect a merely statistical design, seem to occur only in the finer detail on the microlevel [17].”
Certainly, the artificial automata that he uses to reason about brain function have this sort of rigidity.
Nevertheless, von Neumann suspects that there must be more going on. “Yet the nervous system
seems to be somewhat more flexibly designed [81].” In fact, he notes that instead of brains being
“somewhat more flexibly designed” than artificial automata, “deep differences in the basic organi-
zational principles are probably present [81].” 

von Neumann recognized that brain could not possibly be organized by the same principle as
a computer. “The statistical character of message system used in the arithmetics of the central
nervous system and its low precision also indicate that the degeneration of precision, described
earlier, cannot proceed very far in the message systems involved. Consequently, there exist here
different logical structures from the ones we are ordinarily used to in logics and mathematics [82].”
He expected that logic to be probabilistic in character, and expected that this would be necessary
because the brain is somehow inherently stochastic. This was not an unreasonable interpretation
given what was available to him at the time. He had little reason to expect that when the theory
of probability as extended logic was finally developed, it would turn out to be primarily a description
ignorance of cause rather than a measure of uncaused behavior. He had very little reason to anticipate
the development of an impredicative logic, in which formal logic would be encompassed as the
special case that occurs when the amount of constraint on an ambiguous entailment structure limits
the number of possible outcomes to one. He had no reason to expect that the dynamic architecture
of the brain would be observed experimentally. In the absence of these insights, he arrived at what
was probably the best guess that was allowed the information available to him. 

Given his predisposition to disallow ambiguity and impredicativity, he was not receptive to the
possibility of just how deep those differences in organizational principle might go. The brain has
a dynamic morphological architecture and not a rigid architecture [21]. That architecture results in
a hierarchical loop of causation and the inherent stability of the dynamic process is the only property
that stays fixed. Self-repair is a consequences of the dynamic architecture [44,45]. Inherently
ambiguous behavior is also a consequence of the dynamic architecture [75]. That ambiguity implies
that brain behavior is not fully predictable, but as with any process for which we lack full description,
we can make educated guesses about it with a probabilistic theory of logic [74]. 

8.7 CONCLUSIONS

The work of von Neumann is often cited by advocates both of the computational theory of mind
and of the computational theory of life. However, it turns out that his work provides no support
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for either of these theories. His notion of complexity was an automaton that could make copies
like itself, but that are more complicated than itself. The only place in his work in which he claimed
to have demonstrated such a construct was in the kinematic model of the self-reproducing autom-
aton. Even here von Neumann expressed his misgivings that perhaps he had not taken a sharp
enough look at his axiomatization. His concern was well founded. A sharper look reveals that the
kinematic model had contradictory axioms. By design the 29-state model avoids the issue of
complexity. Quite simply put, nothing in von Neumann’s discussion of self-reproducing automata
actually serves to model evolution from the simple to the complicated. 

An error that von Neumann made in connection with the 29-state automaton has been propa-
gated by commentators on his work [83]. That error is interpreting the capacity of a process to
make an exact copy of itself to be the signature of complexity. As the data processing inequality
and von Neumann’s own comments on crystal growth indicate, the capacity of a process to make
an exact copy of itself, particularly in a milieu whose crystalline regularity precludes the possibility
of noise, is the signature of simplicity. 

The automata in von Neumann’s work are strictly unambiguous devices that process strictly
unambiguous data streams. The idea that ambiguous streams of signs could be effectively processed
in brains, or that the description of brain dynamics would be inherently ambiguous, seems never
to have occurred to him. 

This does not change the fact that he left several clues that pointed to the possibility. He
recognized certain situations as being beyond his power to disambiguate, and in those situations
he resorted to a qualitative approach very similar to the strategies of impredicative logic to decide
what to do next. He recognized that there were processes of stability and repair in biological brains
that are completely beyond the power of computation. He recognized that first-order logic is
inadequate to describe biological brain behavior. 

von Neumann’s automata describe computation, and not biology. They do not model genetic
behavior; genetic behavior does not require complete description, but without complete description
von Neumann’s automata collapse. His automata do not model biological reproduction; von Neu-
mann regarded the propagation of exact copies to be no more significant than crystal growth;
nevertheless this is exactly the property of the 29-state automaton. His automata do not model
biological evolution; designing the 29-state automaton to make only an exact copy of itself from
an exact description of itself, von Neumann specifically forestalled any capacity for it to evolve.
It is true that in the kinematic model he saw the capacity to for an automaton to produce something
more complicated than itself from an exact description of itself, and so to facilitate evolution.
However, that model is based on contradictory axioms, and von Neumann himself not only
expressed misgivings about its axiomatization, but also changed the axiomatization when he
formulated the 29-state model. When one considers von Neumann’s actual results, and his own
opinions about them, the assertion that “von Neumann’s hypothetical automatons have probably
had their greatest impact in biology [84]” is difficult to comprehend. In reality very few biologists
have even remotely been familiar with von Neumann’s work and thereby an alleged impact of self-
replicating automata on biology would be minimal at best. Moreover, for these biologists who were
familiar with von Neumann models (primarily theoretical biologists of 1970s through present)
the obvious misgivings and mistakes described in this chapter invalidated automata theories as the
sole tools to explain the phenomenon of life itself.
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9.1 INTRODUCTION

 

Thermodynamics is unique among physical and chemical descriptions of our surroundings in that
it does not rely on a detailed knowledge of any interior structure of the systems* to which it pertains
but rather treats such systems as “black boxes” whose equilibrium states are determined by the
surroundings with which they can coexist and which can be described by a few parameters. This
feature assures that the theory holds true when the system is a collection of molecules, a beaker
of water, or a black hole. Einstein expressed this feature of thermodynamic theory in his classic
quote:

 

Thermodynamics is the only physical theory of universal content which, within the framework of the
applicability of its basic concepts, I am convinced will never be overthrown. — Albert Einstein

 

Foremost among these basic concepts is the notion of equilibrium, the situation where the state
of the system does not vary noticeably in time. The “noticeably” in the previous sentence has two
complications. The first is that if this system were to be cut off from its surroundings the state
would remain the same. This distinguishes equilibria from steady states. The second is the fact that
the notion of equilibrium is associated with a particular time scale. Over larger periods of time,

 

* In standard presentations of thermodynamics [2,5], the term 

 

thermodynamic

 

 

 

system

 

 is universally used. In order not to
deviate from this established usage, we have retained the expression here in spite of the collision of meanings of the
overloaded term system in this handbook. Every occurrence of the term system in this chapter is to be taken in the
thermodynamic sense.
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any system will eventually evolve until the final dead state of 

 

56

 

Fe is reached through nuclear
transformations.

As an example, consider a carbon filament suspended in air. On a human timescale, that carbon
filament will be in equilibrium thermally with the air surrounding it while retaining its chemical
integrity as free carbon. On a much longer timescale, it would also achieve chemical equilibrium
with the oxygen of the surroundings to form CO

 

2

 

. If we were to pass an electric current through
the filament, it would heat up and glow and appear not to change over many minutes. While this
would be a steady state on this timescale, it is not at equilibrium because when we stop the current,
the state changes to a lower temperature.

 

9.2 A HISTORICAL INTRODUCTION TO THERMODYNAMICS

 

Thermodynamics began with the development of early theories of heat and mechanics. The analysis
was primarily motivated by an economic impetus: the newly invented steam engine. Carnot’s [1]
great accomplishment was to show that the conversion of heat into work has limitations set by
what we today view as a “no free lunch” principle: one cannot extract more work from an initial
configuration of states of a collection of thermodynamic systems than it would take to restore those
systems to such initial states after the work was extracted [2]. This is often stated as the impossibility
of a perpetual motion machine of the second kind [2] because it is the essence of what we today
call the second law of thermodynamics. It predates the first law by about 25 yr.

The first law of thermodynamics also can be stated as a “no free lunch” principle: we cannot
get more work out of a system than the change in its internal energy. More commonly, however,
the first law is stated as a conservation law, which, historically, combined the two separate conser-
vation laws for heat (caloric) and mechanical energy [3] into one conservation law for a quantity
called internal energy whose change is defined by 

(9.1)

where 

 

U

 

 is the internal energy, 

 

W

 

 is the work done on the system, and 

 

Q

 

 is the heat added to the
system. The fact that this defines a 

 

conserved

 

 quantity is a consequence of an empirical
observation — a given amount of work turned into heat by friction always produces the same
amount of heat. (Here as well as in the following we only consider the exchange of heat and work
with the surroundings except where explicitly stated otherwise for simplicity.) Because heat and
work are conserved in processes where no interconversion takes place, this means that internal
energy 

 

U

 

 will be conserved even in processes including such conversions. The fact that 

 

U

 

 is a

 

function of state

 

 is not obvious but requires an assumption to this effect. It is physically stated in
terms of cyclic processes, i.e., processes in which a system starts and ends in the same state. For
such processes, the work produced by the system to the surroundings must equal the heat withdrawn
from the surroundings. A Carnot cycle and a Stirling cycle [4] are examples of such cycles.

Energy has become firmly rooted in our language and intuition, and the conservation of this
energy, as stated by the first law of thermodynamics, is so widely applied that the subtleties
associated with it have faded from the collective consciousness. The second law on the other hand
carries a great deal of subtlety. It is associated with a far lesser known quantity called entropy that
most people, even many scientists, find difficult and abstruse. The deeper meaning of the second
law is a unidirectionality associated with physical processes and as such occupies a unique and
important position among physical laws. All other physical laws view a process and its time-reversed
version as equally acceptable or unacceptable on physical grounds. The second law of thermo-
dynamics asserts that only one direction is physically possible — unless of course the process is
reversible, which is only an ideal abstraction. The second law is associated with the increase of
entropy whose changes are defined by

∆U W Q= + ,
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(9.2)

Here 

 

∆

 

S

 

 is the increase of entropy of a thermodynamic system at temperature 

 

T

 

 when the
amount of heat 

 

∆

 

Q

 

rev

 

 is added reversibly. Intuitively, the construction of entropy [5] expresses the
unidirectionality of transport, notably of heat, between two systems, from higher to lower temper-
ature. The mathematical theory of thermodynamic systems focuses on one such system, a thermo-
dynamic system, and describes geometrically the set of equilibrium states it can have. The allowed
modes of interaction with the surroundings define the equilibrium. Important for this perspective
was a far subtler form of the second law introduced by Caratheodory [6], which asserts that

 

arbitrarily close to any equilibrium state of a system there exist states that are not accessible
without the transport of heat out of the system

 

. Exchange of other quantities like work and mass
can occur freely.

 

9.3 DEFINITIONS AND AXIOMS

 

A 

 

simple thermodynamic system

 

 is a homogeneous macroscopic collection of components. The
system is treated as a black box and its 

 

state

 

 is describable by a small number of macroscopic
parameters, typically its energy, entropy, volume, and particle number, dictated by the surroundings
with which it coexists. However, not all of these are necessarily independent. A simple single-phase
system consisting of 

 

n

 

 – 1 components has 

 

n

 

 independent parameters called thermodynamic degrees
of freedom. Parameters in excess of this will be interdependent. Simple thermodynamic systems
may interact with one another to form a nonuniform thermodynamic system.

Such interactions between systems and between systems and the surroundings occur through 

 

walls,

 

which are constructed to allow passage of certain quantities. All other exchange is blocked. An isolated
system has no exchange with its surroundings, i.e., its volume, energy, particle number, etc. are
fixed. An adiabatic wall allows passage of only volume (e.g., by moving a piston, i.e., exchanging
work, but not particles). A diathermal wall allows in addition passage of heat. Similarly, a semi-
permeable wall further allows passage of specific types of particles.

By selecting a proper wall, desired standard 

 

processes

 

 are allowed. Thus an adiabatic wall
between a system and its surroundings allows only adiabatic processes, i.e., processes where no
heat is exchanged with the surroundings and production of work therefore must be accompanied
by a decrease of the internal energy. A diathermal wall permits isothermal processes at the tem-
perature of the surroundings. Here work produced is compensated by influx of heat, keeping the
internal energy fixed. Semipermeable walls may allow, e.g., passage of oxygen, sodium ions, water,
and/or glucose. Inside a system coupled to its surroundings through such a wall, chemical reactions
may proceed while exchanging reactants and products with the surroundings.

Thermodynamic cycles are made up of sequences of such standard processes. For example, a
Carnot cycle involves a system (called the working fluid), which undergoes a cyclic process by
following a sequence of standard processes while connected to a corresponding sequence of
surroundings. The sequence followed is isothermal (hot) — adiabatic — isothermal (cold) —
adiabatic. Systems with ongoing chemical reactions may steer such reactions through the perme-
ability of the wall and by controlling the work and heat flows (isothermal, adiabatic, isobaric, etc.).

The Carnot cycle also illustrates another important version of the second law — the fact that
the conversion of heat to work is a limited affair in which only a certain fraction of the heat can
be captured as work. How large a fraction can be converted is the so-called Carnot efficiency, which
depends on the temperatures of heat sources and sinks available for contact during the isothermal
branches of the cycle. Let us look at a simple reversible Carnot heat engine operating between a
hot heat reservoir at temperature 

 

T

 

H

 

 and a cold reservoir at 

 

T

 

L

 

. The engine absorbs the amount of
heat 

 

Q

 

H

 

 from the hot reservoir accompanied by the entropy influx 

 

S

 

H

 

 = 

 

Q

 

H

 

/

 

T

 

H

 

. Because the engine
operates in a cycle and thus cannot accumulate entropy, it must somehow dispose of this much

∆ ∆S Q Trev= .
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entropy. The work produced does not carry any entropy, so the only available sink is the cold heat
reservoir. However, entropy and heat are transported together, so discharging 

 

S

 

H

 

 must be accom-
panied by a discharge of heat equal to 

 

Q

 

L

 

 = 

 

S

 

H

 

 

 

×

 

 

 

T

 

L

 

. The fraction of heat turned into work in this
reversible machine is thus (

 

Q

 

H

 

 – 

 

Q

 

L

 

)/

 

Q

 

H

 

 = 1 – 

 

T

 

L

 

/

 

T

 

H

 

, the famous Carnot efficiency. A realistic
irreversible engine will of course produce even less work. Note that the engine cannot convert all
incoming heat into work, not for energetic reasons but due to entropy constraints.

In all cases, the quantities exchanged belong to a class of variables called extensive, i.e.,
variables, which are additive when systems are merged (energy, entropy, volume, and particle
number). The corresponding intensive variables (temperature, pressure, and chemical potential) are
not additive over subsystems but describe possible gradients. At equilibrium either between systems
or between a system and its environment, these intensive variables will be the same in all the
connected systems. Thus extensive variables scale with the power 1 of the size of the system consid-
ered, the intensive variables with power 0.

Using the definitions above, we are in a position to state the axioms in their traditional
geometrical form [7].

 

Axiom 1

 

: For any thermodynamic system, there exists an extensive function of state 

 

U

 

 called
the internal energy.

 

Axiom 2

 

: For any thermodynamic system, there exists an extensive function of state 

 

S

 

 called
the entropy. The entropy is a concave function of any set of complete independent extensive
parameters of the system 

 

S

 

 = 

 

f

 

(

 

U

 

, 

 

V

 

, 

 

N

 

1

 

, 

 

N

 

2

 

, …, 

 

N

 

k

 

, 

 

P

 

, 

 

M

 

, …), where the arguments are
the internal energy 

 

U

 

, volume 

 

V

 

, particle numbers 

 

N

 

 of the 

 

k

 

 molecular species, polarization

 

P

 

, magnetization 

 

M

 

, as well as any other relevant extensive quantity.

These two axioms are essentially the first and second laws expressed in terms of a single system.
The geometrical picture that goes with this formulation is the concave surface 

 

S

 

 

 

=

 

 

 

f

 

(

 

U,V, …

 

) in

 

n

 

 + 1 dimensions for the 

 

n

 

 degree of freedom system. The sections below present a modern
differential geometrical alternative to this picture including a rigorous proof of Caratheodory’s
principle. The presentation is perforce rather sketchy in that it provides the bare minimum of
examples, although all the definitions are carefully stated and rigorous. More details can be found
in any modern differential geometry book [8,9].

 

9.4 THERMODYNAMIC STATES, COORDINATES, AND MANIFOLDS

 

Roughly speaking, a manifold is a coordinatizable set. More correctly, it is a set equipped with re-
valued coordinates which uniquely label the elements and whose values change in a “continuous”
fashion. Historically, manifolds arose as a collection of variables subject to equations. Early
examples were well studied by the founders of differential geometry as curves and surfaces [10].
Going to higher dimensions was an obvious and yet conceptually difficult leap that required a
higher level of abstraction [11]. Spaces of states of dynamical systems were one strong impetus
toward such abstraction. Mechanical systems, such as compound pendulums, provided ready exam-
ples. The set of equilibrium states of a thermodynamic system is yet another example. This is 

 

the

 

example for the present chapter. The set of equilibrium states of a thermodynamic system was also
conceptualized initially as a surface; James Clerk Maxwell had a plaster model of the equilibrium
states of water constructed and sent it as a present to Josiah Willard Gibbs (Figure 9.1), the pioneer
responsible for the dramatic shift in point of view of thermodynamics from a theory of processes
to a theory of equilibrium states [3].

As illustration, consider an ideal gas. There are many functions of state for the gas: pressure

 

p

 

, temperature 

 

T

 

, volume 

 

V

 

, energy 

 

U

 

, entropy 

 

S

 

, mass 

 

M

 

, density 

 

ρ

 

, heat capacity 

 

C

 

v

 

 …. The
variables on this list are not independent in the sense that for a particular ideal gas, once we know
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two of them, the others are determined. In usual parlance, this means that the dimension of the
manifold of equilibrium states is two.*

We now proceed on a more formal level. Recall that a 

 

topological space 

 

(

 

M,T

 

) is a set 

 

M

 

 and
a collection 

 

T

 

 of subsets of 

 

M

 

 that are designated as open. All that is required here is that the
collection 

 

T

 

 be closed under unions and intersections, the latter only over finite subcollections of

 

T

 

. We say that 

 

T

 

 defines a topological structure on the set 

 

M

 

. Such structure is needed to be able
to talk about the continuity of functions defined on 

 

M

 

. In practice, the coordinates defined by our
observables define this topology. 

A 

 

manifold

 

 (

 

M

 

, {

 

ϕ

 

k

 

, 

 

k 

 

∈

 

K

 

}) is a topological space equipped with a collection of coordinate
functions 

 

ϕ

 

k

 

 each of which establishes a topological isomorphism between an open set 

 

O

 

k

 

 in 

 

M

 

and an open subset 

 

U

 

k

 

 of 

 

R

 

n

 

, such that the open sets cover 

 

M

 

, i.e., such that

 

FIGURE 9.1

 

(See color insert following page 150.) 

 

Plaster model of the equilibrium states of water con-
structed by James Clerk Maxwell and sent as a present to Josiah Willard Gibbs. (

 



 

The Cavendish Laboratory,
University of Cambridge. Reproduced with permission.)

 

* This at least is the situation described in the early chapters of thermodynamics books and traditional physical chemistry
books. In fact, this list of functions of state gets expanded once the reader hits the chapters on the behavior of the entity
in the presence of electric and magnetic fields. In that case, the polarization 

 

D, and magnetization M of the gas also play
a role and the entity is said to have more degrees of freedom. The corresponding mathematical object, the manifold, has
to have a higher dimension equal to this number of freedoms because it takes that many functions of state to uniquely
specify a state.

∪
k K

kO M
ε

=
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A topological isomorphism is an invertible function, which is continuous and has a continuous
inverse. In simple terms, this assumes that, at least locally, we can coordinatize the set M and that
nearness in the sense of approximately equal coordinate values implies nearness in M. One final
condition is needed: wherever there are two or more possible sets of coordinates, the transition
between the two sets of coordinates must be well behaved. Formally, if for some j and k in K,

, then the function is smooth on . “Smooth” is a nebulous
word and serves to define the type of manifold under consideration; for example, smooth can mean
“continuous,” “differentiable,” “twice differentiable,” or “infinitely differentiable,” or “analytic.”
The standard meaning of smooth for the manifold of equilibrium states of a thermodynamic system
is piecewise analytic.* Note that if the manifold is a connected set, the overlap condition requires
that the dimension of the images of all the coordinate charts be the same value n. This number is
called the dimension of the manifold.

The manifold that we concentrate on below is the manifold of equilibrium states of a thermo-
dynamic system. The dimension of this manifold is what is known as the number of degrees of
freedom of the system. This is the number of independent parameters that need to be specified in
order to reproduce the experimental realization of the system. This often depends on the number
of external (environmental) degrees of freedom we are able to vary. If we only vary pressure and
temperature, we only get two degrees of freedom. If we also vary (say) the magnetic field sur-
rounding the system, we get a third degree of freedom, the magnetization M. The number of degrees
of freedom also depends on the time scale on which we desire to view the system. For example,
on a certain time scale we can take the amount of oxygen and iron in the system as independent
variables. On another (slower) time scale we could assume this degree of freedom to be set by
chemical equilibration to form iron oxide. On intermediate time scales comparable to the relaxation
time of this degree of freedom, thermodynamic arguments strictly speaking do not apply. This state
of affairs is usually referred to as the assumption of separability of time scales [5].

9.5 MANIFOLDS AND DIFFERENTIAL FORMS

The abstract formulation of differential geometry via the theory of manifolds [8,9] gives an ideal
tool for studying the structure of any theory and this has been one of its primary roles. Such
structure is typically specified by additional properties beyond “coordinatizability.” To make this
possible, we need a number of concepts, which comprise the standard baggage of the theory: tangent
vectors, differential forms, wedge products, and submanifolds.

A path** in a manifold is a differentiable one-parameter family of points defined by a contin-
uous function γ that maps an interval in the real numbers to points in the manifold. In classical
thermodynamics books, such paths are called quasistatic loci of states because every point on the
path is an equilibrium state. Finite rate processes do not quite proceed along such paths because
equilibrium is only approached asymptotically. Again the notion of separability of time scales
comes to the rescue. A quasistatic locus is a good representation of a process that occurs on time
scales that are slow compared to the equilibration time of the system.

A tangent vector at a point is an equivalence class of paths that “go in the same direction at
the same speed.” We may think of a tangent vector at a particular state as an n-tuple of time
derivatives of the coordinate functions at the point. Thus a tangent vector represents any path that
has the same instantaneous values of all these derivatives. The set of tangent vectors at a point is
a vector space. This comes naturally through the identification with n-tuples of time derivatives.
Note that by the chain rule, a tangent vector assigns a time derivative to any function of state not

* Recall that a function is analytic if it has a convergent power series. Piecewise analytic is needed here because different
analytic forms correspond to different phases (e.g., liquid, solid, and gas) of the entity.
** Sometimes this is called a parameterized path.

O Oj k∩ ≠ ∅ ϕ ϕj k� −1 ϕk j k
nO O R( )∩ ⊂
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just the coordinate functions. For example, if f is any function of state of a fixed quantity of some
ideal gas, then the tangent vector (dp/dt, dT/dt) assigns to f the time derivative

(9.3)

An equivalence class of paths corresponding to one tangent vector are exactly those paths along
which a set of coordinate functions change at the given rates, e.g., (dp/dt, dT/dt) in the above
example. 

A cotangent vector at a point (p,T) is an equivalence class of functions at the point where now
two functions are deemed equivalent if their rates of change are the same along every tangent vector
at the point. The coordinate expression of a cotangent vector is what we would normally associate
with the gradient of any one of the functions in the equivalence class, i.e., each equivalence class
is just the set of functions whose gradient vectors at the point are equal. There is good reason to
identify this at a particular point (p0, T0) with the differential of any one of the functions in the
equivalence class and write 

(9.4)

for the cotangent vector corresponding to the function F. Such functions exist for every pair of
numbers f and g, e.g., F = fp + gT. It follows that cotangent vectors also form a vector space of
dimension n and in fact this vector space is the dual of the tangent space — hence the name. The
duality means that each cotangent vector may be thought of as a linear map of tangent vectors to
real numbers. In coordinate form, this means that each tangent vector is identified with a row
n-tuple and each tangent vector with a column n-tuple. The assignment of a real number to a vector
and a covector at a point is by means of the chain rule (9.3) where f is any function in the equivalence
class represented by the cotangent vector and (dp/dt, dT/dt) is taken along any path in the equivalence
class represented by the tangent vector.

In summary, we have defined the tangent space and the cotangent space of a manifold at a
point. The tangent space is the set of tangent vectors, which we may think of as infinitesimal
displacements. Formally, we defined them as an equivalence class of curves that go in the same
direction at the same speed. Dual to the tangent space we have the cotangent space, the set of all
covectors at the point. These were defined as an equivalence class of functions whose differentials
are equal at the point of tangency.

With the definition of tangent and cotangent vectors come the notions of vector field and
differential form. These are just smooth choices of a tangent vector or, respectively, a cotangent
vector at each point on the manifold. We choose to follow the long-standing tradition in thermo-
dynamics, which focuses the development on differential forms. Because of the duality, most things
can be done with either differential forms or vector fields. 

The reader should pause here to note that our definition of a differential form is merely a
modern statement of the traditional notion of a differential form. In coordinates, such forms all
look like

(9.5)

with f and g now functions of state. Examples of important differential forms in classical thermo-
dynamics are heat Q and work W. Note that while the differential of a function is a differential

df
dt

f
p

dp
dt

f
T

dT
dt

= ∂
∂

+ ∂
∂

.

dF fdp gdT= +

ω = +f p T dp g p T dT( , ) ( , )
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form, not all differential forms are differentials of functions although any form may be written as
a linear combinations of differentials of state functions.*

9.6 PFAFFIAN EQUATIONS

The first law of thermodynamics in its familiar form asserts that there exists a function of state
U = internal energy such that its differential is equal to

(9.6)

When coordinate expressions for the differential forms of heat and work are included, this
equation becomes a Pfaffian [6] partial differential equation in any coordinate system. The solutions
of such a Pfaffian equation are submanifolds. Because we will be needing solutions of such
equations, we sketch the main results concerning such equations: the theorems of Frobenius and
Darboux. To motivate the machinery needed, consider the following. 

It turns out that once we require one equation among the differential forms on our (sub)manifold,
other equations logically follow. In particular, taking the differential of both sides of such an
equation must also hold. As an example, consider Equation 9.6 with the usual elementary form of
the coordinate expressions substituted in for heat Q and work W. Then it follows that 

(9.7)

In fact, this equation, though hardly recognizable as such, is equivalent to the Maxwell relations
[7]. To make sense of this equation, we need definitions of the exterior derivative operator d(.) and
the wedge product .

The product of differential forms is indispensable for multiple integrations and the reader likely
saw such products in a calculus course. Alas, these products are all too often handled without
comment and by mere juxtaposition. This ignores the orientation implied by the order of the factors.
We thus adopt the symbol (wedge) for the product and add the requirement of antisymmetry

(9.8)

The natural thing to do with a differential one-form is to integrate it along a path to get a number

(9.9)

where ω is the one-form in Equation 9.5. Similarly, the natural thing to do with two-forms is to
integrate them along a two-dimensional region and so on for higher forms. Note that the set of k-forms
again forms a vector space at any point. The dimension of this vector space is . To get a feel
for the concept just introduced, consider the first two-form in Equation 9.7 above. Expanding dT
in the coordinates (S,V) results in

(9.10)

* Note that while any given cotangent vector (necessarily at one point) is equal to the differential of many functions, a
differential form specifies a cotangent vector at each point. Thus for a differential form to be the differential of a function
is asking the same function to match a smoothly defined cotangent at all points and this in general is not possible. 
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where we have used one consequence of antisymmetry: dS dS = 0. Performing a similar expansion
of the second two-form in Equation 9.7 gives

(9.11)

As a second illustration of what the mathematical machinery of differential forms and wedge
products can do for us, consider the product of two differential forms du and dv where u and v are
functions of x and y. It then follows that

(9.12)

Note that the coefficient of dx dy is exactly the Jacobian determinant of the coordinate change
from (x,y) to (u,v). It follows that the usual change of variable formula for multiple integrals is just
a consequence of the fact that we are really integrating a wedge product. The machinery of k-forms
also gives a definition of functional independence. We say that k functions f1, f2, …, fk are inde-
pendent in a region if df1 df2 … dfk ≠ 0.

Equipped with the wedge product, the set of differential forms on a manifold have an algebraic
structure known as a ring. The interesting subsets in rings are ideals — subrings such that the
product of any element in the ring with an element of the ideal is an element of the ideal. The
standard elementary example of a ring is the set of integers. Ideals in this ring are of the form “all
multiples of k” for some integer k. The notion of ideal turns out to be central to characterizing,
which differential forms can be solutions of systems of Pfaffian equations. By rearranging the
equation so all terms are on one side, we may view each equation as a condition that a differential
one-form vanishes on the solution submanifold. For example, instead of writing the first law as in
Equation 9.6, we could write

(9.13)

The advantage of writing it this way comes about from the fact that zero times anything will
still give zero. It follows that any form that has a factor that should vanish on our solution must
still vanish on our solution. In algebraic jargon, this means that the set of differential forms that
vanish on a submanifold comprise an ideal. Not all ideals work, however; we are missing the
condition that these be differential ideals, i.e., that they be closed under the action of taking
differentials. To make sense of this, we need the extension of the exterior derivative operator d(.)
to higher forms. This is obtained by the following three requirements:

• for functions (0-forms) d gives precisely the one-form which is the differential of the
function

• d[d(anything)] = 0
• d obeys the product rule

(9.14)
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where ω is any K-form and η is any L-form. To illustrate this definition, we calculate the exterior
derivative of a general differential one-form in two variables

(9.15)

As a check, note that this automatically vanishes as required by condition A, if the form we
start with happens to be exact.

As a second illustration, we note that applying condition B above in Equation 9.11 implies one
of the Maxwell relations 

(9.16)

Note that this is followed from Equation 9.7 by expanding all the terms in the coordinates dS
and dV. Similar expansions of Equation 9.7 in other coordinates give the other Maxwell relations,
establishing our claim that Equation 9.7 is really all of the Maxwell relations combined into one
coordinate-free expression! 

At last we are in a position to state the definitive theorem concerning the solution of Pfaffian
systems: Frobenius’s theorem. The theorem says that associated with any given system of Pfaffian
equations 

ωj = 0, j = 1, …, J,

where for each ωj a differential one-form on a manifold M, there is a differential ideal of forms
generated by the ωj which must vanish on any solution of this Pfaffian system. 

Specifically, it is an ideal in which the exterior derivative of any form in the ideal is still in the
ideal. 

The computational implications for a single Pfaffian equation ω = 0 are the following. Examine
the sequence 

(9.17)

On any solution of ω = 0, every one of these differential forms must vanish. Some of them are
identically zero on the entire manifold. Once one is identically zero, all subsequent terms are identically
zero. Suppose that the first identically zero term occurs at position r. The number r expresses
something fundamental about the form ω: r is the minimum number of variables that can be used
to express ω. This is the classic theorem of Darboux. To state it carefully, we need to distinguish
the cases where r is even and where r is odd. The theorem states that there exist smooth independent
functions x1, x2, …, xm, y1, y2, …, ym, z such that for r = 2 m + 1,
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(9.18)

while for r = 2 m,

(9.19)

Furthermore, the dimension of the maximal solutions of ω = 0 is m. 
We do not here present proofs of the theorems of Frobenius and Darboux but make use of them

to understand the implications for theory building. We hope that the development above makes their
validity easy to accept. Our purpose here is to present the mathematical structure of thermodynamic
theory and this is best understood with these facts in hand. The proofs can be found in standard
texts on differential geometry [8,9] and occasionally even in books on theoretical physics [6].

9.7 THERMODYNAMICS — THE FIRST LAW

Let us examine the structure of thermodynamic theory with the machinery above. The first law, as
usual, is the Pfaffian differential Equation 9.10 

dU – W – Q = 0 (9.20)

Let us calculate the parameter r for this form in the case when W = –pdV and Q = TdS. Viewing
for the moment p and T as independent variables, the sequence above becomes

(9.21)

We thus conclude that r = 5 and thus the maximal solutions of (9.20) will be two-dimensional.
Robert Hermann turned these facts into a mathematical definition [12]. Hermann defined an n
degree of freedom thermodynamic system as a maximal submanifold of a 2n + 1 dimensional
manifold equipped with a differential form Ω such that r(Ω) = 2n + 1, i.e., such that Ω (dΩ)n ≠ 0. 

A 2n + 1 dimensional manifold equipped with a differential form Ω such that Ω (dΩ)n ≠ 0
is called a contact manifold and the form Ω the contact form. Hermann’s definition can be restated
in the following form: a thermodynamic system is a maximal solution of Ω = 0, where Ω is a
contact form. The name “contact” has some significance; contact forms arose in mechanics to deal
with surfaces rolling on each other [13]. Also in thermodynamics we can interpret the form Ω as
coming from the coexistence of a system with its environment. By Darboux’s theorem, there exist
coordinates that make Ω assume the canonical form

For simplicity, we will carry out our discussion for the explicit two-dimensional case Ω = dU +
pdV – TdS. The parameters (p,T) can be thought of as parameters describing the environment of
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the system. At equilibrium, the system chooses its state to coexist with this (p,T). In the geometrical
picture introduced by Gibbs wherein we view the system as the surface of the function U = U(V, S),
the normal vector describing the tangent plane to the surface is (–1, –p, T). As p and T are changed,
this tangent plane rolls on the surface in much the same way that mechanical cogs roll on each
other. Moving our perspective to the space of the five variables (U, p, V, T, S) reveals the essential
nature of this coexistence. 

The functions (U, p, V, T, S) are by no means the only contact coordinates, i.e., the only
coordinates, which make Ω assume the form in Equation 9.18. For example, the classical Legendre
transformation always result in contact coordinates 

(9.22)

where H, G, and F are the enthalpy, the Gibbs free energy, and the Helmholtz free energy. Their
usefulness derives from exactly those situations when the environment specifies the coefficients in
front of the differentials, i.e., the “y” variables from Darboux’s theorem. This further justifies the
view that the “y”s describe the environment, the “x”s describe the system, and “z” characterizes
the contact.

Requiring a coordinate change to preserve the appearance of Ω shown in Equation 9.18 allows
many more coordinate changes. These are generalized Legendre transforms [14] and form an infinite
dimensional group known as the contact group [15]. Its use to date has been limited by the paucity
of exotic environments. Its use has been demonstrated for a system inside a balloon whose pressure
and volume obey a definite relationship although neither pressure nor volume is constant. It is
potentially useful for biological systems with complex constraints. 

Besides possible uses of these generalized Legendre transforms, the first law of thermodynamics
in the form Ω = 0 gives a deeper perspective regarding the thermodynamic method. It shows us
that this method may be thought of as a theory for “viewing” the inside of black box systems [14].
We manipulate n parameters y in the environment and observe the changes in our black box system
as it moves to states of coexistence. In this way we find a thermodynamic theory of the black box.
The form Ω chooses the particular x and z that must go with the y’s describing the system’s
surroundings.

9.8 THERMODYNAMICS — THE SECOND LAW

In the context of differential forms, the natural choice for the second law of thermodynamics is
Caratheodory’s form: the heat form Q has an integrating factor. In terms of the machinery above,
this is most naturally stated as Q dQ = 0 [16], which, according to Equation 9.19 with m = 1,
says that Q must be of the form TdS. 

This way of stating the second law completely omits the phenomenology. Caratheodory’s
original statement is that at any state of an equilibrium thermodynamic system has arbitrarily close
states that cannot be reached by adiabatic processes, i.e., along states with Q = 0. Physically, these
inaccessible states correspond to the states that we would reach by removing a little bit of heat
from our system. Such states cannot be reached by relaxing internal degrees of freedom or adding
or extracting work; these mechanisms could only add heat (through friction). Caratheodory’s work
on Pfaffian equations shows that this condition is equivalent to the condition of the existence of
an integrating factor. For completeness, we now present a direct proof of this fact following Pauli
[6]. We begin by making use of Darboux’s theorem to choose coordinates, which make the
differential form for heat take its simplest guise
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or

where the functions x1, x2, …, xm, y1, y2, …, ym,z (respectively, x1, x2, …, xm, y1, y2, …, ym) are
independent. For convenience in the present proof, we combine the two cases by setting 

(9.23)

in the first case and k = m in the second case, making

(9.24)

Now consider any equilibrium state s0 with coordinates (x1
0, x2

0, …, xk
0, y1

0, y2
0, …, yk

0, w0),
where w represents any additional independent coordinates, which do not appear in Q. Consider
any nearby state s1 with coordinates (x1

1, x2
1, …, xk

1, y1
1, y2

1, …, yk
1, w1) and let 

(9.25)

As we will show below, there exists an adiabatic path, i.e., a path γ such that ∫γ Q = 0, from
s0 to s1 provided there exists a nonzero k-tuple y* = (y1*, y2*, …, yk*), which is orthogonal to ∆x.
This is indeed the case for any ∆x unless k = 1, i.e., unless Q is of the form y1dx1 in which case
Q has an integrating factor 1/y1.

To see the existence of an adiabatic path for the case where a nonzero y* exists, we splice
together three partial paths (Figure 9.2)

FIGURE 9.2 The adiabatic path connecting nearby points.
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(9.26)

with

(9.27)

Portions γ1 and γ3 are adiabatic because dxi = 0, i = 1, …, k, while γ2 is adiabatic, because
along γ2, 

(9.28)

9.9 RIEMANNIAN STRUCTURE

In addition to the contact structure Ω and the heat form Q, thermodynamic systems possess another
structure that can be attributed to the specialness of extensive coordinates, i.e., coordinates that
scale with the size of the system. In all such coordinates, the second derivative matrix of the entropy
S with respect to a set of independent extensive variables (say, U,V) defines a Riemannian structure
on our manifold. This follows purely from the fact that entropy is a maximum at equilibrium and
thus its second derivative is a negative definite symmetric matrix. For our simple two degree of
freedom system, this matrix is

(9.29)

where R is the gas constant and Cv is the constant volume heat capacity of the system. Such
Riemannian structure associates lengths to processes. This thermodynamic length has been shown
to be the relevant quantity in a covariant improvement to Einsteinian fluctuation theory [17,18]. It
can be interpreted as the “number of fluctuations” traversed. The statistical mechanical expression
for this distance shows it to be mathematically identical to Fisher’s genetic distance introduced to
measure genetic drift [19]. For thermodynamic processes in finite time, the square of the distance
is proportional to the minimum entropy produced by traversing the process [20,21].

9.10 CONCLUSIONS FOR SYSTEMS BIOLOGY

Our presentation was an attempt to present thermodynamics in a way that starts as a theory about
a set for which we can measure certain parameters — a manifold. The first law was revealed to be
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a statement that the theory was really applicable in any context where the system will choose a
state once its environment is specified. For this context, the theory gives a constructive prescription
through the postulate that the energy deficiency form Ω = dU – Q – W be a contact form. The
prescription defines the corresponding variables of the system and the coexistence function — a
generalized thermodynamic potential. From this perspective, we see thermodynamics as a theory
of black box systems that are characterized by the surroundings to which they equilibrate.
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APPENDIX
Systems Biology: 
A Dictionary of Terms

 

Activation energy

 

 — (1) Difference between the energy of substrates of a chemical reaction
and the energy of hypothetical transition state (activated complex) of this reaction.
(2) Minimum amount of energy needed to activate atoms or molecules to a condition in
which it is equally likely that they will undergo chemical reaction or transport as it is
that they will return to their original (nonactivated) state. The transition state theory of
chemical reactions postulates the existence of a high-energy transition state between the
low-energy initial conditions and the (also low-energy) product conditions of a one-step
reaction (or every single step of a multistep reaction). Within this theory, the activation
energy is the amount of energy required to boost the initial materials (substrates) “uphill”
to form the transition state (consistent with meaning [1] above. The chemical reaction
then proceeds “downhill” of the energy barrier to form the intermediate (in multistep
reaction) or final (in one-step reaction) products. Catalysts (such as enzymes) lower the
activation energy by altering the transition state.

 

Active site

 

 — A region within its molecular structure to which an appropriate substrate can
bind and thereby form the so-called enzyme–substrate complex.

 

Adaptation

 

 — (1) A heritable feature of an individual’s phenotype that improves its chances
of survival and reproduction in the existing environment. (2) An activity of a system
(such as, for instance, an organism, a population, or an ecosystem) that leads to better
chances of its own survival in a given environment. 

 

Algorithm 

 

— A systematic list of a finite number of step-by-step instructions for accomplishing
some task that has an end (result). More precisely, an algorithm is a process of repre-
sentation that can be characterized by the following five properties: (1) It has zero or
more input data. (2) It has one or more output data. (3) It is resolved into unambiguous
steps. (4) It halts after finitely many steps. (5) It is effective.

 

Allele

 

 — One of possible alternative forms of the same gene occupying a given locus (position)
on a chromosome. 

 

Allele frequency

 

 — The relative proportion of a particular allele in a specific population. 

 

Alphabet 

 

—

 

 

 

An ordered finite set of symbols (letters). Symbols can be elementary (not frac-
tionable into “smaller” symbols) or composite (fractionable into smaller units). The
alphabet that contains only elementary symbols is referred to as an 

 

elementary alphabet.

 

Ambiguity 

 

— Although vague or sloppy thinking may lead to an ambiguous representation of
an unambiguous situation, the property of ambiguity is not to be confused with either
vagueness or sloppiness. Rather, ambiguity is a process in which more than one possible
outcome is consistent with the entailments that produce the outcome. Semantically, this
is reflected in context dependent multiple meanings of a sign. As Quine and others have
shown, some ambiguities are inherent; adding disambiguating contextual information
introduces new ambiguities more quickly than it resolves the old ones. Although commonly
considered a property of epistemological representations, ambiguity also encompasses
ontological processes. Causal ambiguity is the situation in which the causal constraints
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on a process are sufficiently loose that any of several different outcomes is consistent
with the entailment structure, and, having occurred, can be said to have been caused by
the entailment structure.

 

Analogy

 

 — (1) A resemblance in function or structure, which is due to convergence in evolution
but not to common ancestry. (Resemblance due to common ancestry is referred to as
homology). (2) A relation between two phenomena that can be described by means of
the same model. For example, a mechanical pendulum and electric condenser are anal-
ogies of each other because their behavior can be adequately described by the same
mathematical formalism (differential equations). 

 

Anticipatory system 

 

— A system that is capable of making and utilizing a predictive model
of itself and/or its environment. If we would want to model such a system with a dynamic
systems formalism, its current changes of states would be affected by the future (pre-
dicted) states.

 

Ascendency 

 

—

 

 

 

A measure of how well a system is performing. It is the product of the total
system activity and an informational measure of how well organized (see 

 

organization

 

below) its connections are. Self-organization thereby is seen as an increase in a system’s
ascendency. Both the system activity and its organization are seen as results of auto-
catalytic (see 

 

autocatalysis 

 

below) agency at work in the system.

 

Attractor 

 

— A subset of a (dynamic) system’s states to which the system “is attracted.” When
time passes, a dissipative dynamical system settles into an attractor and even then remains
confined to the states belonging to the attractor unless forced to leave; mathematically —
a set in the phase space that has a neighborhood in which every point stays nearby and
approaches the attractor as time goes to infinity; c

 

haotic system 

 

has 

 

chaotic attractor

 

that displays exponentially sensitive dependence on initial conditions; strange attractor
is one that has noninteger 

 

fractal dimension;

 

 unfortunately, the term “strange attractor”
is often used for any chaotic attractor; however, there exist chaotic attractors that are not
strange, as well as strange attractors

 

 

 

that are not chaotic. 

 

Autocatalysis

 

 — A causal circuit whereby the activity of an entity serves indirectly to enhance
itself via a chain of directed, positive interactions. This is a special form of positive
feedback (see below) wherein all links in the loop are enhancing. The direction of the
loop possesses an inherent asymmetry in that the result of a random event upon the
circuit elicits a nonrandom response. 

 

Automaton 

 

— (1) A completely or partly self-operating machine or mechanism. (2) A system
whose activity can be described by a set of subsequent transitions between states.

 

Binomial

 

 

 

distribution

 

 — A discrete probability distribution of obtaining an exact number (say 

 

n

 

)
of successes out of 

 

N

 

 Bernoulli trials. Each Bernoulli trial is a success with a fixed
probability 

 

p 

 

and failure with (also fixed) probability 

 

q

 

 = 1 – p. 

 

Bioinformatics 

 

— (1) Information technology–based trend in biology-related academic and
industrial activities of computer scientists, engineers, mathematicians, chemists, physi-
cists, medical professionals, and biologists. Activities include archiving, searching, dis-
playing, manipulating, and otherwise integrating life-science-related data. Examples of
bioinformatics tasks include mapping genomes, high-throughput contig annotation, inter-
pretation of gene expression data, and creation of databases. (2) A subfield of computer
science that is devoted to biological applications of computer programming, databases,
and related activities.

In both meanings bioinformatics differs from computational biology (the field of
biology in which some of the methods require use of computers). The difference is
primarily in the motivation of practitioners of bioinformatics (demonstrate better software
than the competition) as opposite to motivation of practitioners of computational biology
(curiosity and desire to learn and understand biological systems). 
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Biological species (concept)

 

 — A population or group of populations within which there is a
significant amount of gene flow under natural conditions, but which is genetically isolated
from other populations. 

 

Biota

 

 — All of the organisms, including animals, plants, fungi, and microorganisms, found in
a given area. 

 

Biotechnology 

 

— Application of molecular biology to produce food, medicines, and other chem-
icals usable for controlling living conditions of individual humans or populations thereof. 

 

Body plan 

 

— A hypothetical spaciotemporal design that includes an entire animal, its organ
systems, and the integrated functioning of its autonomous parts. 

 

Catalyst

 

 — A chemical substance that accelerates a reaction and can be detected as unchanged
after this reaction. Within the transition state theory of chemical reactions, catalysts lower
the activation energy of a reaction via restructuring its transition state to a lower energetic
level than the transition state would assume without catalysis. 

 

Centripetality

 

 — The aggregation of material and energetic resources within and among system
members that participate in autocatalytic causal circuits. This tendency elsewhere has
been called “chemical imperialism,” and it provides the drive behind the competition
and striving that is only tacitly acknowledged in conventional evolutionary theory.

 

Chaotic system

 

 — A nonlinear (dynamic) system that displays 

 

deterministic chaos

 

; chaotic
systems display also extreme sensitivity to small changes in system parameters. 

 

Chemical reaction

 

 — A chemical process in which substances are changed into different ones
(with different properties) via rupture or rearrangement of the chemical bonds between
atoms in a way that does not affect atomic nuclei.

Based on IUPAC recommendation: A process that results in the interconversion of

 

chemical species

 

. Chemical reactions may be 

 

elementary reactions

 

 (one-step reactions) or

 

stepwise reactions

 

 (multistep reactions). It should be noted that this definition (meaning 2)
includes experimentally observable interconversions of conformers of the same com-
pound. Detectable chemical reactions normally involve sets of 

 

molecular entities

 

 but it
is often conceptually convenient to also use the term to denote changes involving single
molecular entities (i.e. “microscopic chemical events”). 

Every chemical reaction can be studied in terms of its mechanism (series of subsequent
intermediary compounds between the substrates and products). 

Reactions occur at a particular rate that depends on several parameters such as the
temperature and concentrations of the reactants. 

Many chemical reactions go to completion, i.e., attain equilibrium, over a period of
minutes or hours, and can be monitored by classical techniques, such as pressure change
or electrochemistry. Chemical dynamics explores the detailed behavior of molecules
during the most crucial moments of reactions, for example, when bonds are being broken
and new bonds being formed.

 

Chemical kinetics

 

 — Studies of rates of chemical reactions and inference of possible mechanism
on the basis of such studies. (Knowledge of a reaction mechanism comes in part from
a study of the rate of a reaction).

The fact that a reaction is thermodynamically favorable does not necessarily mean
that it will take place quickly. Many reactions that do proceed are endothermic. Therefore,
the enthalpy change is not the ultimate arbiter of the spontaneity of a chemical reaction,
and an additional term, the change in free energy, is an important factor. In addition, the
rate of the reaction — the change in concentration of a reactant or of a product with
respect to time — gives information on how the reaction will proceed. Some of the
factors that influence the rate of a reaction are: concentration of reactants and/or products,
temperature, surface area, and pressure.

Where a catalyst is present (e.g. an enzyme), then the concentration of the catalyst
also influences the rate of reaction.
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Church–Turing Thesis 

 

— Copeland BJ. The Church-Turing Thesis. In: Zalta E, ed. Stanford
Encyclopaedia of Philosophy. Stanford: http://plato.stanford.edu/, 1996; gives the fol-
lowing description that is adequate to the content of this volume:

 

… Church’s thesis: A function of positive integers is effectively calculable only if recursive.

Turing’s thesis: LCMs [logical computing machines: Turing’s expression for Turing machines]
can do anything that could be described as “rule of thumb” or “purely mechanical”.

It is important to distinguish between the Turing-Church thesis and the different proposition that
whatever can be calculated by a machine can be calculated by a Turing machine. (The two
propositions are sometimes confused.) Gandy (1980) terms the second proposition ‘Thesis M’. 

Thesis M: Whatever can be calculated by a machine is Turing-machine-computable. 

Thesis M itself admits of two interpretations, according to whether the phrase ‘can be calculated
by a machine’ is taken in the narrow sense of ‘can be calculated by a machine that conforms
to the physical laws (if not to the resource constraints) of the actual world’, or in a wide sense
that abstracts from the issue of whether or not the notional machine in question could exist in
the actual world. The narrow version of thesis M is an empirical proposition whose truth-value
is unknown. The wide version of thesis M is simply false….

 

As far as systems biology is concerned, the narrow version of thesis M (one can call
it thesis N) is believed to be true:

 

Thesis N

 

: Any computation that can be completely described by an algorithm express-
ible in a formalized language can be translated into an equivalent set of operations of a
Turing machine (a formal system).

(Formalized language has its syntax and semantics while a formal system has syntax
only.) 

 

Code 

 

— (1) A mapping from one symbolic representation (input representation) of a system
into another representation (output representation). If the input and output representations
can be expressed in the form of elementary symbols chosen from finite alphabets, a code
can be seen as a relation between input and output alphabets of a device that does
encoding (an encoder) or decoding (a decoder). (2) A transformation whereby messages
are converted from one representation to another. 

 

Codominance

 

 — A condition in which two alleles at a locus produce different phenotypic
effects and both effects appear in heterozygotes. 

 

Codon

 

 (of the genetic code) — A trinucleotide in messenger RNA that according to the genetic
code corresponds to a specific amino acid.

 

Coenzyme

 

 — An additional substance (compound) that plays a role in catalysis by an enzyme. 

 

Coevolution

 

 — Concurrent evolution of two or more species that are mutually affecting each
other’s evolution. 

 

Communication 

 

— (1) A process of sharing knowledge or units thereof. (2) A process of
sending and receiving messages.

 

Community

 

 — Any ecologically integrated group of species of microorganisms, plants, and
animals inhabiting a given area. 

 

Comparative analysis

 

 (in evolutionary biology) — An approach to studying evolution in which
hypotheses are tested by measuring the distribution of states among a large number of
species. 

 

Complex (complexity)

 

 — (1) There are dozens, if not, hundreds of (often mutually exclusive)
definitions of complexity in the scientific literature. Probably, one of the most popular
is von Neumann’s idea of “exceeding a threshold of complication.” This definition had
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numerous problems, not the least of which is knowing when the threshold is exceeded.
A more useful definition of complexity, as used in several chapters of this work, is that
a complex process is characterized by a closed-loop hierarchical structure of entailment.
In this context, complexity comes in two distinct versions. Ontological complexity is
characterized by a closed loop of inherently hierarchical efficient causes, and is some-
times called an “endogenous process” or “closed to efficient cause.” Epistemological
complexity is characterized by a closed loop of inherently hierarchical logical relation-
ships, and is typically characterized by an impredicative representation. A consequent
property of the closed-loop hierarchical structure of entailment is that it has no complete
representation or “largest model.” (2) A system is complex (convoluted) if it does not a
single model that would completely represent it. Instead, an unlimited number of models
complementary to each other but not derivable from each other are needed to represent
a convoluted (complex) system for any practical purposes. By definition, there is no (and
there cannot be) largest model of a convoluted system.

 

Computing 

 

— Executing an algorithm by a symbol-manipulating device placed in appropriate
conditions. The nature of appropriate conditions usually includes a modeling relation
between the device and the formal description of algorithm.

 

Convergent evolution

 

 — The evolution that leads to similar features in apparently otherwise
unrelated life forms.

 

Contingency

 

 — A chance or aleatoric event that remains beyond prediction under the assumption
of continuous behavior. Whenever contingent events are generic, simple, and repeatable,
a degree of prediction can be achieved using probability theory. Contingent events, however,
can be complex and unique for all time, thereby eluding treatment by probability theory.
The existence of contingencies frustrates efforts at arbitrarily precise determination. 

 

Covalent bond

 

 — A chemical bond formed by sharing electrons between two atoms.

 

Cotangent space

 

 — The vector space at a point in a manifold, which is dual to the tangent
space. A vector in this space can be defined as an equivalence class of functions that
“change at the same rate in every direction.” A cotangent vector specifies a rate of change
along any tangent vector. If {X

 

i

 

} is a coordinate system at a point, the differentials 

 

dx

 

i

 

form a basis for the cotangent space and thus define the corresponding coordinate system
in the cotangent space. 

 

Crossing over

 

 — The reciprocal exchange of corresponding segments between two homologous
chromatids. 

 

Data (datum) 

 

— Unit of representation (elementary model) of selected aspects of reality provided
in a form suitable for symbolic manipulation such as intellectual reflection, discussion,
or mechanical transformation (computation). Data can be characterized (described) with
the help of at least three properties: (1) content, (2) medium, and (3) structure.

Set of unitary representations (1) organized in a way suitable for symbolic processing.
Synonym of “information”: a unit of knowledge that can be communicated and

processed.
A set of units (3) or a combination of these units plus some consequences of combining

them. 

 

Data structure (information structure)

 

 — An organized (and often codified) form in which
data is available for symbolic processing with the help of specific algorithm or classes
of algorithms. 

 

Deterministic chaos

 

— Behavior with no simple means of prediction despite the fact that it
arises in a deterministic (dynamic) system because of extreme sensitivity to initial
conditions due to presence of chaotic attractor; chaos arises in a dynamical system if
two arbitrarily close starting points diverge exponentially, so that their future behavior
is eventually unpredictable. 
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Development

 

 — A progression toward ever more constrained and harmonious behaviors among
the elements of a living ensemble. Development begins with an increase in the number
of distinguishable parts of the system. As the system develops, any activity by one
member is focused (constrained) to have an effect on a single or small subset of other
members. Development can be considered any increase in system organization (see
below). 

 

Differential form

 

 — A smooth choice of a cotangent vector at each point in a manifold. If (

 

x

 

1

 

,

 

x

 

2

 

, …, 

 

x

 

n

 

) is a coordinate system at a point, then the differentials 

 

dx

 

i

 

 form a basis for
the cotangent space with coefficients that are smooth functions of (

 

x

 

1

 

, 

 

x

 

2

 

, …, 

 

x

 

n

 

). Dif-
ferential forms typically represent “infinitesimal” quantities that need to be integrated
along a path to give net changes. 

 

Downward causation 

 

— Downward causation is the idea that the properties of the parts are
influenced by the whole, of which they are members. Traditionally, it was assumed that
God was the source of all downward causation, and for the past several centuries, virtually
all discussion of downward causation was dismissed as “unscientific.” However, there is
no justification for the notion that downward causation must have a mystical or super-
natural origin. The admission of the possibility of a naturally occurring downward
causation helps to formulate a number of potentially solvable problems in science.

 

Dynamic programming 

 

—

 

 

 

An optimization technique designed primarily for search problems. 

 

Dynamical system (dynamic system) 

 

— A system that has the capability to change with time.

 

Ecological niche

 

 — The functioning of a species in relation to other species and its physical
environment.

 

Ecology

 

 — The scientific study of the interaction of organisms with their environment, including
both the physical environment and the other organisms that live in it. 

 

Ecosystem

 

 — An interacting combination of living and nonliving elements that occupy a given
physical region. The living members of each ecosystem are separated (usually to some
degree in space and time) into an autotrophic group that fixes energy and heterotrophic
components that take their sustenance from what is fixed by the autotrophs. There is usually
physical transport linking the autotrophic and heterotrophic regions of any ecosystem. 

 

Effective 

 

— In the context of theoretical computer science, the property of being effective is
the property of being fully representable by a Turing machine. In other contexts, it has
very different meanings. For example, in the context of causation, an effective process
is one that produces an effect. 

 

Efficient cause 

 

— Efficient cause is an ontological influence not to be confused with the modern
notion of efficiency. Furthermore, it is a different concept from the “billiard balls bounc-
ing off each other” paradigm that inevitably arises in the discussion of causation in
physics. If causation is considered as the transformation of one event into another event,
efficient cause is the constraint that regulates how that transformation unfolds. Efficient
cause arises from the intersection of two influences, the global constraints on the rela-
tionships between phenomena (epistemologically represented as the laws of nature) and
the morphology of the process. Efficient causes in ontology are often represented epis-
temologically by “dynamical laws,” usually derived by applying some “law of nature”
to the structure of the process. A simple example of an efficient cause is the ontological
constraint on the operation of a linear time-invariant system that is represented by the
system’s transfer function.

 

Elementary alphabet — 

 

An alphabet whose letters cannot be fractioned into smaller textual
units. 

 

Emergent property

 

 — A property of a complex system that is not exhibited by its individual
component parts determined from a model of the system. The emergence can take place
as a result of spontaneous changes in the system (such as chemical reaction or phase
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transitions) or as a consequence of anticipatory behavior of the anticipatory system
(future, anticipated, states of the system can affect the current changes of states.) 

 

Endergonic reaction

 

 — One for which energy must be supplied. (Contrast with exergonic
reaction.) 

 

Endo-

 

 — A prefix used to designate an innermost structure. 

 

Endogenous (endogeny) 

 

— The term originally arises in medicine and economics. Informally,
an endogenous process is one that “makes itself up as it goes along.” In the context of
this work, endogeny is the ontological version of Rosen’s complexity; an endogenous
process is a process in reality that is entailed by a closed-loop hierarchic structure of
efficient causes. Endogeny is the ontological analog to the epistemological concept of
impredicativity. In keeping with Rosen’s principle of separation of the model from the
process being modeled, there is no such thing as an endogenous formal system or an
impredicative natural system.

 

Endosymbiosis

 

 — The living together of two species, with one living inside the body (or even
the cells) of the other. 

 

Endosymbiotic theory

 

 — An (speculative) evolutionary scenario in which the eukaryotic cell
evolved from a prokaryote that contained other endosymbiotic prokaryotes. 

 

Energy

 

 — The capacity to do work. 

 

Entailment 

 

— (1) Generalized implication, semantic implication, or material implication. X
entails Y if Y is a consequence of X. A given fact, phenomenon, process, or statement
X entails another fact, phenomenon, process, or statement Y if and only if the occurrence
of Y is a consequence of the occurrence of X. (2) A constraint that limits the possible
outcomes of a process. Causal entailments are the causal constraints that allow particular
effects. Inferential entailments (such as chains of subsequent implications) are the logical
constraints that give rise to particular conclusions. 

 

Entropy

 

 — (1) A state function of a thermodynamic system in equilibrium. Spontaneous
irreversible processes in a closed system lead from an equilibrium state with lower
entropy to another equilibrium state with higher entropy. Entropy is defined by how it
changes in a reversible process and its definition is constructed so as to distinguish the
forward process, which occurs spontaneously, from the reverse process, which can never
happen. This is embodied in the second law of thermodynamics, which states that the
total entropy of the universe increases in any spontaneous process. Such increase defines
“time’s arrow” and this is the only physical law without time reversal symmetry. As
traditionally defined, the entropy of the system changes by the amount of heat entering
the system divided by the temperature of the system. One of the deepest results of 20th
century physics is that an equivalent definition is to define the entropy of a system to be
the logarithm of the number of microstates consistent with its macroscopic description.
In a classical mechanical description of the system, this is just the volume in phase space
accessible to the system. (2) Shannon entropy — a mathematical function of a random
variable that measures deviation of probability distribution (of this variable) from the
discrete uniform distribution. Shannon entropy and its variants have been excessively
used as statistical tools of choice in several fields of engineering and “hard” science.

 

Environment

 

 — An organism’s surroundings, both living and nonliving; include temperature,
light intensity, and all other species that influence the focal organism. 

 

Enzyme

 

 — A protein that serves as a catalyst for a chemical reaction. (RNA-based catalysts
are also called RNA enzymes by some scientists but, in principle, the term “enzyme”
refers to a protein.)

 

Epi-

 

 — A prefix used to designate a structure located on top of another.

 

Epigenesis 

 

— A process of interaction between genes and environment, which ultimately results
in the distinctive phenotype of an organism.
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Epigenetic effect (phenomenon) 

 

— Any gene-regulating activity that does not involve changes
to the regions in DNA coding for proteins being regulated and that can persist through
one or more generations. Two known examples of epigenetic phenomena are gene
silencing and imprinting.

 

Epigenetic hypothesis 

 

— Patterns of gene expression, not genes themselves, define each cell
type. (This is the original concept of epigenetics coined by Waddington in early 1950s
in order to explain differentiation.)

 

Epigenetic rule 

 

— A model of an alleged trend in epigenesis that could channel development
in particular directions.

 

Epigenetics 

 

— Study of heritable changes in gene function, which occur without a change in
the DNA sequence (at least not the one that encoded the studied protein).

 

Episome

 

 — A plasmid that may exist either free or integrated into a chromosome.

 

Epistasis

 

 — An interaction between genes, in which the presence of a particular allele of one
gene determines whether another gene will be expressed. 

 

Epistemology — 

 

Theory of representation of reality in the human mind (theory of knowledge).
The origin, structure, methods, and validity of knowledge or specific mental representa-
tions of reality are typical epistemological subjects. The term “epistemology” appears
to have first been used by J. F. Ferrier, 

 

Institutes of Metaphysics

 

 (1854) who distinguished
two branches of metaphysics (science of being in itself) — epistemology and ontology.
(

 

See also

 

 Ontology; Modeling Relation; Natural System)

 

Equilibrium — In biochemistry, a state in which forward and reverse reactions are proceeding
at counterbalancing rates, so there is no observable change in the concentrations of
reactants and products. 

In evolutionary genetics, a condition in which allele and genotype frequencies in a
population are constant from generation to generation. 

In thermodynamics, a state of the system in which all parameters describing it have
constant values that do not change with time.

Estimator — A rule (a random variable) for determining the value of a population parameter
based on a random sample from this population. An example of an estimator is the sample
mean, which is an estimator of the population mean. 

Evolution — (1) Any gradual change. Organic evolution, often referred to as evolution, is any
genetic and resulting phenotypic change in organisms that can take place after the passage
of many generations. (2) A temporal sequence of patterns in biotic systems over long
periods of time. Charles Darwin, the commonly recognized originator of evolution in
biology, suggested that biotic taxa and patterns arise somehow gradually out of preex-
isting taxa. The dynamic of evolution is assumed to be an overproduction of similar
forms, which is pruned back by external natural factors collectively referred to as “natural
selection.” Evolution was once thought to be progressive, like development, but now is
commonly held to be adirectional. 

Exterior product — A formal, anticommuting product defined on differential forms to give
two-forms, three-forms, etc. which get integrated multiple times. Exterior products of
differential forms typically represent densities that need to be integrated over a region
to give net quantities. The anticommuting feature means that dxi ∧ dxj = –dxj ∧ dxi and
is needed to force products with repeated factors to vanish and brings the added benefit
of oriented values for integrated densities such as area. Also called wedge product. 

Exterior forms — Linear combinations of exterior products of differential forms. 
Exergonic reaction — A reaction in which free energy is released. (Contrast with endergonic

reaction.) 
Exergy — The work available from the disequilibrium of a system with its surroundings. When

the surroundings maintain constant temperature, it reduces to the free energy. 
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Feedback — The situation by which the activity of a system element propagates over a causal
pathway back to affect its own workings — a causal circuit. The effect upon the original
element can be either positive or negative. Feedbacks are the crux of the science of
“cybernetics,” which explains how the behavior of a system can be controlled externally
or from within. (See also “autocatalysis” above.) 

Feedback control — Control of a particular step of a multistep process, induced by the presence
or absence of a product of one of the later steps.

Final cause — Final cause is the causal influence by which the properties of the parts are
influenced by the whole of which they are members. Traditionally, it was assumed that
God was the only final cause, and for the past several centuries, virtually all discussion
of final causation was dismissed as “unscientific.” However, we have little difficulty
admitting the concept of a linear hierarchy of causation into scientific discussion. For
example, if a small robot changes the layout of a linear time-invariant system, conse-
quently updating its transfer unction, we can say that the robot has entailed the efficient
cause of the linear system. Similarly, if a big robot modifies the small robot, we can say
that the big robot has entailed the efficient cause of the small robot. We can also imagine
a progression of ever larger robots, each rebuilding the next smaller one. Thus, we have
an example of a linear hierarchy of efficient causes. At adjacent positions in our linear
hierarchy, if efficient cause A entails efficient cause B, we have only one direction for
tracing the path from A to B, and this is traditionally assigned the direction of “upward”
causation. In Rosen’s complexity, the linear hierarchy is bent into a closed loop, and
remarkable consequence ensues. We can still move upward from efficient cause A to
efficient cause B. However, we can start at B and move in the same direction the long
way around until we eventually arrive at A; in effect, we can as easily say that B causes
A (downward causation without divine intervention) as A causes B (upward causation).
As discussed by Rosen, Freeman, and Damasio, once such a loop forms, it has a property
of dynamic superstability; it will do whatever it can (including making novel modifica-
tions to its own structure) to preserve the integrity of the loop. Final cause can be seen
as the “downward” influence of the loop on efficient causes that are its components. It
is obtained by traversing the loop of causation the long way around, and it has a self-
determined goal, to preserve the integrity of the loop.

Formal cause — Formal cause is not to be confused with formalisms or formal systems. It is
the influence that entails the particular form of an effect. It does so by modulating the
efficient cause. In other words, formal causes change the properties of the efficient cause
within its structure, but they do not update the structure of efficient causes. A simple
example of formal cause can be seen in a linear time-invariant system. If the transfer
function is the description of the efficient cause of the operation of the system, the
parameter set of the transfer function is the description of the formal cause.

Formalism — (1) A school (academic tradition) of metamathematics developed by Hilbert,
which claims derivability (provability) of every mathematical statement within a properly
designed axiomatic theory. A consequence of this claim was that every true proposition
about a formal axiomatic system could be derived from the axioms of the same system.
This particular consequence has later been shown to be untrue for some axiomatic systems
of mathematics (Gödel, 1937) and thereby untrue in general. (2) Any inferential (formal)
system that can be used to model another system. In terms of Hertz–Rosen modeling
relation, the modeled system can be a natural system or another formal system. (See also
Church–Turing Thesis; Model; Modeling Relation; Formal System)

Formal system — If a Rosen modeling relation defines a congruency between a process in
reality and an epistemological representation of that process, then the epistemological
representation is labeled a formal system. It is not to be confused with a Hilbert’s
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formalism. Hilbert’s formalisms disallow impredicatives. In contrast, Rosen modeling
relations often use impredicative structures as formal systems.

First law of thermodynamics — Total energy of the closed thermodynamic system can be
neither created nor destroyed and therefore must remain constant. Arguably, an example
of closed system is the entire Universe. That is why the original formulation of the first
law was: Energy of the Universe cannot be either destroyed or created. 

Fitness — The contribution of a genotype or phenotype to the composition of subsequent
generations, relative to the contribution of other genotypes or phenotypes. (See inclusive
fitness.)

Free energy — A function of state for thermodynamic systems. It is a special case of exergy
for processes that take place at constant temperature and pressure (in which case it is
called the Gibbs free energy) or for processes that take place at constant temperature
and volume (in which case it is called the Helmhotz free energy). The change in free
energy is the maximum work that could have been obtained from the net changes subject
to the constraints appropriate to that type of free energy.

Gene — A unit of heredity. The term is used in biology in three alternative variants: (1) The
unit of genetic function which carries information for a functionally important unit of
biological function. (2) The determinant (Mendelian factor) of an observable character-
istic of an organism. (3) Protein-coding region in cellular DNA (or RNA) sequence. The
protein encoded by such region is referred to as “gene product.” Variant (3) is favored
in molecular biology and its biotechnology-related derivatives.

Gene duplication — A DNA rearrangement that generates a supernumerary copy of a gene in
the genome. This would allow each gene to evolve independently to produce distinct
functions. Such a set of evolutionarily related genes can be called a “gene family.”

Gene family — A set of genes derived from a single parent gene via gene duplication. Individual
genes from a family need not be on the same chromosomes.

Gene flow — The exchange of genes between different species (an extreme case referred to as
hybridization) or between different populations of the same species caused by migration
following breeding. 

Gene pool — All of the genes in a population. 
(the) Genetic Code (translation code; universal genetic code) — Many-to-one mapping (func-

tion) that assigns one of 20 naturally occurring amino acids to each of 61 “sense”
trinucleotide code words (codons) during protein biosynthesis. Three additional trinu-
cleotides — TAA, TAG, and TGA — serve as signals for the termination of translation
during protein biosynthesis but do not encode any amino acid. The initiation of translation
is often encoded by the trinucleotide ATG, which is also a codon for amino acid
methionine. (Many protein sequences begin with methionine for this reason.)

Genetic drift — Changes in gene frequencies from generation to generation in a small population
as a result of random processes. 

Genetics — The study of heredity. 
Genome — (1) Complete set of genes of an organism. (2) All the DNA contained in an organism

(or a representative cell thereof), which includes both the chromosomes within the nucleus
and the DNA in mitochondria. (3) Complete genetic information defining an organism.

Genotype — An exact description of the genetic constitution of an individual, either with respect
to a single trait or with respect to a larger set of traits.

Genus — A group of related, similar species. 
Homeostasis — The maintenance of a steady state, such as a constant temperature or a stable

social structure, by means of physiological or behavioral feedback responses. 
Hypothesis — (1) A tentative assumption (usually about a set of facts) that can be verified as

true or false by either experiment or reasoning. (2) A statement assumed to be true for
the purpose of argument or further testing. (3) An antecedent H of conditional statement
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“if H then P”. The P is a prediction or consequence, which should be valid if H could
be proven true.

Hypothesis testing — In statistics, making a decision between rejecting or not rejecting a given
null hypothesis on the basis of a set of specific observations.

Impredicative — An impredicative representation is one that is characterized by the constraint
on its relationship with itself. The conventional definition of impredicativity is given by
Kleene. “When a set M and a particular object m are so defined that on one hand m is
a member of M, and on the other hand, the definition of m depends on M, we say that
the procedure (or the definition of m, or the definition of M) is impredicative. Similarly,
when a property P is possessed by an object m whose definition depends on P (here M
is the set of the objects which possess the property P). An impredicative definition is
circular, at least on its face, as what is defined participates in its own definition.” Kleene’s
definition is purely epistemological; it is a property of representations. In the context of
this work, impredicativity is the epistemological version of Rosen’s complexity. It is the
epistemological analog to the ontological concept of endogeny. In keeping with Rosen’s
principle of separation of the model from the process being modeled, there is no such
thing as an endogenous formal system or an impredicative natural system.

Information — A vague, metaphoric concept that relates what we perceive (by observing,
reading, or listening) to a change in our knowledge. There is no single, universally
accepted definition of the term. The two most plausible explications of the term infor-
mation are: (1) Anything that constrains the number of options available to a systems
behavior. Although one of the notions of information arose out of a communications
context, where it is manifested in “atomic” form, such as a letter of a printed text over
a finite alphabet, the idea pertains as well to the distributed and innate constraints that
serve to channel flows in networks along preferred pathways. The same calculus used
on “atomic” forms of information applies as well to its more diffuse manifestations.
(2) A tacit component of functionally competent entity (i.e., of a system) that is in charge
of assuring this functional competence. In Aristotle’s writings (see his On Soul as well
as Metaphysics), every object, phenomenon, and process has its soul in addition to its
material form. The soul is inside the form but is not the same as the form. Nonetheless,
the soul of things is responsible for their nature, for their being what they are. In this
sense, the Aristotelian soul is nonmaterial organizing power for the matter. This concept
of organizing power is intuitively the same as the notion of information contained in the
functionally robust system. The same intuition is also present in all considerations of
knowledge acquisition, storage, and sharing (communication). 

Informatics — (1) The art of management of data and management-oriented data analysis.
(2) Synonym of applied computer science that includes database-related tasks, computer
programming as well as hardware-related tasks.

Inhibitor — An “anticatalyst” that prevents a catalyst from proper functioning in its catalytic
capacity. When the enzyme is a catalyst, an inhibitor is a substance, which binds to the
surface of the enzyme and interferes with its action on its substrates. 

Internal energy — A function of state for thermodynamic systems. Internal energy is defined
by how it changes: either by work being done on or by the system, or heat being added
to or taken from the system. The conservation of energy is the first law of thermodynamics
and asserts that the internal energy added up over all systems never changes. 

Law of independent assortment — The random separation during meiosis of nonhomologous
chromosomes and of genes carried on nonhomologous chromosomes. Mendel’s second law. 

Law of segregation (Mendel’s first law) — Alleles segregate independently from one another
during gamete formation.

Likelihood — A hypothetical estimate of chance that an event, which has already occurred
would yield a specific outcome. The concept of likelihood differs from that of probability.
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(Probability refers to the occurrence of future events with possibly unknown outcomes,
while likelihood refers to past events with known outcomes.)

Manifold — (1) (of sense): The ingredients of sense experience (such as colors, sounds, etc.)
considered as a multiplicity of discrete items. [See I. Kant, Critique of Pure Reason, A.
77-9-B. 102–105. — L.W.] (2) Multiplicity of options for a specific activity. (A manifold
of possibilities.) (3) A set equipped with real-valued coordinates, which uniquely label
the elements and whose values change in a “continuous” fashion. Historically, manifolds
arose as a collection of variables subject to equations. Curves and surfaces in multidi-
mensional Euclidean spaces were early examples of manifolds that were well studied by
the founders of differential geometry. Going to higher dimensions was an obvious and
yet conceptually difficult leap that required a higher level of abstraction.

Mapping — (1) In genetics, determining the order of genes on a chromosome and the distances
between them. (2) In sequence analysis, older name for sequence annotation. Putative
functional or structural domains in long nucleic acid or protein sequences are detected
(mapped) and the sequence is labeled (annotated) with names of domains (annotations).
(3) In mathematics, a name for function or transformation, which assigns every element
of one set (domain) to one and only one element of another set (counter domain).

Material cause — If we think of causation as a process in which one occurrence is transformed
into another, then material cause is the input to the transformation. As a degenerate
example, consider the traditional concept that cause is like “billiard balls bouncing off
each other.” The material cause is seen as the energy of the ball doing the striking that
is transformed into the effect, the energy of the ball being struck. However, the only
cause admitted in the billiard ball example is material cause; it is then confused with
causation in general. Likewise, the “information from past and present,” also a material
cause, is seen as the generalized cause in a “causal” filter. 

Markov process — A probabilistic model in which the probability of the next state of a system
depends solely on the probability of the previous state or a finite sequence of the previous
states.

Markov source — A device that generates symbols with probabilities that could be determined
from a Markov process. The terms Markov source and hidden Markov model are
synonymous.

Median — “Middle value” of a sorted list of numbers. The smallest number such that at least
half the numbers in the list are not greater than it. 

Mean (the arithmetic mean) — Given a finite list of N real numbers x1, x2, x3, … , xN the mean
is a real number M calculated from the formula:

.

In statistics sample, mean is an estimator of the expected value of the distribution.
Meiosis — Division of a diploid nucleus to produce four haploid daughter cells. The process

consists of two successive nuclear divisions with only one cycle of chromosome replication. 
Meta- — A prefix used in different fields in different way, which often pertains to some concept

of “beyond” or “above.” (1) In general biology, the prefix can denote a change (like in
metabolism) or a shift to a new form or level (like in metamorphosis). (2) In logic and
systems science, the prefix “meta-‘can denote description (or other form of “processing”
such as formal derivation or computation) from a perspective of a next higher level of
organization of thought. For instance (object) language can be described with the help
of a metalanguage; logic can be discussed with the help of metalogic, mathematics with
the help of metamathematics and so on.

M
N

xi

i

N

=
=
∑1

1

DK3072_book.fm  Page 234  Thursday, October 12, 2006  10:08 AM



Systems Biology: A Dictionary of Terms 235

Metabolic pathway — A sequence (succession) of enzyme-catalyzed reactions in which prod-
uct(s) of one reaction is(are) the substrate(s) of the next. 

Metabolism — A set of all chemical reactions that occur in an organism, or a well-defined
specific subset of that set (as in “respiratory metabolism”). 

Model (of a system or a complex thing) — (1) A representation of selected aspects (charac-
teristics) of the system with a simultaneous abstraction — away of all other imaginable
or observable points of view and facts. (2) In the Rosen Modeling relation, a model is
a particular kind of representation. The inferential entailment structure of the model
within a formal system is congruent with the entailment structure of the process being
modeled. The utility of the model is that novel insights can be gained about the process
being modeled by asking questions about the model. (3) In logic, a specific semantic
realization of a formal axiomatic system that is given by interpreting the system’s basic
notions. This logical notion of a model is different than the foregoing two concepts used
in science. In this volume, we assume that model is defined by definition (2).

Molecular biology — Field of life sciences that aims at biologically relevant explanations of
structure and function of chemical compounds (i.e., their molecules) found in living cells
and tissues. It has developed from a tradition that adopted mechanistic methods of thinking
from physics and applied them to integrate genetics with cell biology, evolutionary biology,
embryology, immunology, and other classical fields of biology (such as systematics).

Molecular clock — An assumption that biopolymers (nucleic acids or proteins) diverge from
one another over evolutionary time at an approximately constant rate which — in turn —
is assumed to be well correlated with phylogenetic relationships between organisms. 

Molecular evolution — An evolutionary process leading to present day DNA and protein
sequences from the ancestral ones.

Moment (the kth moment) — (1) Of a sequence of N numbers (a list) — the arithmetic mean
of kth powers of elements: (x1

k + x2
k + xN

k)/N. (2) Of a random variable X — the expected
value E(Xk) of a random variable Xk. The mean of X is the first moment of X.

Natural system — If a Rosen Modeling Relation defines a congruency between a process in
reality and an epistemological representation of that process, then the ontological process
is labeled a Natural System. It is important to appreciate that Natural, signifies the
property of “occurring in reality.” Natural Systems can include human-made processes.
(See also Modeling Relation; Formal System; Formalism)

Nonlocality — A nonlocal property is distributed throughout a process. It is everywhere in the
process at once. If an attempt is made to localize the process by trying to observe it at
a single point, as the location becomes infinitesimal, the property vanishes. An example
of nonlocality is Bateson’s description of semantics that meaning lies in the correspon-
dence between a symbol and its referent. Nonlocality has one property not often appre-
ciated; it applies everywhere inside a nonlocal process, but nowhere outside it.

Ontology — (1) The branch of metaphysics concerned with the nature of being (reality itself)
as opposite of the nature of our representations of reality. (The latter is handled by another
branch of metaphysics: epistemology.) (2) Name given by a group of computer scientists
to an idealized integrated collection of databases of structured vocabularies that can be
connected to life-sciences — relevant databases. Each vocabulary is a data structure of
a computer-manageable kind such as — for instance — directed acyclic graph in which
nodes are in a well-defined relation of ancestry (descend). (3) A computer-friendly
representation of complex data that can be read and manipulated by computer programs.

Organic — Pertaining to any aspect of living matter, e.g., to its evolution, structure, or chemistry.
The term is also applied to any chemical compound that contains carbon. 

Organism — Any living creature. A necessary but not sufficient can differ for a process to be
an organism is that it be closed to efficient cause.
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p-Value — The probability of erroneously rejecting an acceptable null hypothesis by chance
alone. For instance a p value < 0.05 means that the probability that the evidence sup-
porting rejection of null hypothesis was due to chance alone is less than 5%.

Paradigm — A general methodological framework along with a set of assumptions, beliefs,
and cultural biases within which questions are asked and hypotheses are formed. 

Parsimony — A principle of preferring a minimal change between subsequent steps of a process.
For instance, a single point mutation is a parsimonious change between two generations
of evolving DNA sequence. 

Pattern — Any logical, geometrical, or (broadly) factual connection between elements of a
model that attracts our attention. “Pattern” is usually understood pragmatically by expe-
rienced explorers of the same model.

Phenotype — The observable properties of an individual as they have developed under the
combined influences of the genetic constitution of the individual and the effects of
environmental factors.

Phenotypic plasticity — The fact that the phenotype of an organism is determined by a complex
series of developmental processes that are affected by both its genotype and its environ-
ment. 

Population — Any group of organisms coexisting at the same time and in the same place, and
capable of interbreeding with one another. 

Population density — The number of individuals (or modules) of a population in a unit of area
or volume. 

Population genetics — The study of genetic variation and its causes within populations. 
Population structure — The proportions of individuals in a population belonging to different

age classes (age structure). Also, the distribution of the population in space.
Pragmatic — Practical. Dealing with facts and occurrences.
Pragmatics — In linguistics, one of three main aspects of studying languages (two others being

syntax and semantics). It refers to usage of sentences in the context of other sentences
as well as of real-world situations.

Pragmatic inference — (1) The art of determining sequence motifs from their instances and
the knowledge context they pertain to. (2) The art of determining an alphabet (vocabulary)
of function-associated motifs based on one or more individual patterns and the knowledge
of structures or mechanisms that correlate well with the presence of these patterns. (3)
Inference to the best explanation; abduction. (4) Reasoning that explores consilience of
inductions or consilience of inductions, deductions, and abductions.

Probability — A measure of chance (possibility) that a particular event (or set of events) will
occur. Values of probability measure are positive real numbers from the closed interval
[0, 1]. Probability of impossible events equals 0 while probability of sure events equals
1. (The concept of probability is related to but different from the notion of likelihood.)

Proteome — Complete set of all proteins encoded in the nuclear component of a genome of a
given organism.

Randomness — Logical equivalent of patternlessness. Randomness is a situation in which
patterns are either undetectable or nonexistent.

Random genetic drift — Evolution (change in gene proportions) by chance processes alone. 
Rate constant — Of a particular chemical reaction, a constant which, when multiplied by the

concentration(s) of reactant(s), gives the rate of the reaction. 
Reactant — A chemical substance that enters into a chemical reaction with another substance. 
Recursion — A recursion is a form of algorithm in which the algorithm invokes nested versions

of itself. However, it preserves the finite character of an algorithm in that it has defined
bottom, an unambiguous test for identifying when it has reached the bottom, and an
unambiguous step to take at the bottom. The step at the bottom is what defines a particular
recursive algorithm. Recursion is not to be confused with impredicativity, which no
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bottom, but rather is defined by the relationship between successive levels in its hierarchy.
In special instances such as the impredicatively defined Fundamental Wavelet Equation,
the impredicative can be approximated by a recursion, and the resulting error is bounded.
However, there is no general principle that allows for the approximation of all impred-
icatives by recursions.

Reduction — (1) In chemistry, gain of electrons, the reverse of oxidation. Reductions often
lead to the storage of chemical energy, which can be released at any time via an oxidation
reaction. (2) In methodology of science, replacement of the modeled complex system
by a simpler surrogate system (a model). 

Reductionism — (1) Causal — an academic doctrine according to which the only legitimate
conclusion about a system can be reached from studying its parts, but one should not
infer properties of parts from studying the whole system. [Downward causation is
“forbidden.”] (2) Methodological — an academic trend according to which complex
systems should be represented by simple models (surrogate systems) which, in turn,
could be studied with a variety of scientific methods.

Regular expression — (1) In sequence analysis and bioinformatics, a flexible definition of a
sequence pattern allowing groups of motifs to reside in the place of single motif. (2) In
information technology (IT), a valid formula of a specialized programming or scripting
language dedicated to serve a software tool or database. For example, most of information
retrieval systems (such as library searchable catalogues) accept queries formulated in a
“language” that consists of simple regular expressions. Another example is a scripting
language for textual pattern matching in UNIX operating system. Some programming
languages (such as PROLOG or PERL) are entirely designed for textual pattern matching
as a way of writing down programs, i.e., regular expressions actually constitute the
programming language.

Regular grammar —A formal grammar that is equivalent of finite-state automaton.
Reversible process — A thermodynamic process is called reversible provided the reverse process

can be achieved without expending additional exergy. In fact all spontaneous processes
are irreversible and reversibility is an idealization that started with frictionless mechanics.
Any friction, heat transfer between systems at different temperatures, or chemical reactions
not exactly at equilibrium take place irreversibly, i.e., with the degradation of some exergy.

Semantics — In linguistics, systematic studies of meaning of linguistic expressions (such as
sentences). Semantics is one of the three components of studying sentences, the two
others being Syntax and Pragmatics.

Semiconservative replication — The common way in which DNA is synthesized. Each of the
two partner strands in a double helix acts as a template for a new partner strand. Hence,
after replication, each double helix consists of one old and one new strand. 

Sequence hypothesis — First of two basic assumptions of molecular biology (the second is the
central dogma).
(1) Original formulation — “…Specificity of a piece of nucleic acid is expressed solely
by the sequence of its bases, and this sequence is a (simple) code for the amino acid
sequence of a particular protein….” [Crick F H C (1958) On protein synthesis. Symp.
Soc. Exp. Biol. 12: 138–163.] (2) In cellular protein biosynthesis, the amino acid
sequence of polypeptide (primary structure of a protein) is collinear with and determined
(solely) by a sequence of a specific protein-encoding region in chromosomal DNA.

Significance (Statistical significance) — (1) The probability that a test or experiment leads by
chance alone to an erroneous rejection of the null hypothesis when the null hypothesis
is in fact acceptable. (2) The likelihood that a statement is true. (3) The degree of deviation
of an observation from its occurrence by chance alone according to a model of chance.
The degree of nonconformity to a (presumed correct) model of chance in the foregoing
sense.
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Simulation — Imitating the behavior of a real system via using properties of its model or a
class thereof. A simulation is often confused with a model. A simulation is an epistemo-
logical description of the entailed outcomes of a process. In contrast, a model is an
epistemological description of the entailment structure that produces the outcomes.

Species — (1) A population or series of populations of closely related and similar organisms.
(2) Biological species — A set (group) of individual organisms capable of interbreeding
freely with each other and — at the same time — incapable of interbreeding with
organisms from outside this set.

Spontaneous reaction — A chemical reaction that will proceed on its own, without any outside
influence. A spontaneous reaction need not be rapid. 

Stability — (1) The capacity for a system to remain within a nominal range of (nonextreme)
behaviors. (2) Resistance to change, deterioration, or displacement. [AHD]. (3) The
ability of a system (or an object) to maintain equilibrium or resume its original state
after alteration (such as resuming original position after displacement.)

Stabilizing selection — Selection against the extreme phenotypes in a population, so that the
intermediate types are favored. (Contrast with disruptive selection.) 

Statistical inference — Finding out properties of an unknown statistical distribution from data
generated by that distribution. 

Standard deviation (SD) — Square root of variance of a distribution. Can be estimated by
sample standard deviation, which is square root of sample variance.

Strong Church–Turing Thesis — The Strong Church–Turing Thesis is an unproven hypothesis
that any physically realizable process can be fully described as a Turing machine. (See
also Church–Turing Thesis.)

Sub- — A prefix often used to designate a structure that lies beneath another or is less than
another. 

Substrate — One of the chemicals (chemical entities) that enter chemical reaction. [Every
reaction processes from substrates to products.]

Symmetry — (1) The property of the relation between two objects A and B, such that if A is
in relation with B, then B must be in relation with A. (2) Identification of two objects
regarding dislocation in space (such as translation or rotation), time, or generating a
mirror image.

Syntax — In linguistics, set of rules whereby words or other elements of sentence structure are
combined to form grammatically correct sentences without regard to their meaning.

System — A group of interacting, interrelated, or interdependent elements forming a complex
whole, whose properties are not a simple combination of properties of elements. Specific
additional meanings include: (1) A functionally related group of elements, especially:
1a. The organism regarded as a physiologcal unit. 1b. A group of physiologically or
anatomically complementary organs or parts. The immune system, nervous system, or
a digestive system are representative examples. 1c. A group of interacting mechanical
or electrical components functioning in a robust manner within a mechanical or electrical
device (machine). Exhaust system or electric system in an automobile are representative
examples here. So do parts of the proverbial watch functioning toward measuring passage
of time. [The watch is more the sum of parts as a proverb about the hammer and the
watch clearly indicates.] 1d. A network of objects or structures with indication of
connections between them. Metro or road system in a big city is a representative example
here. (2) An organized set of interrelated ideas or principles such as a religion, ideology,
or other belief-based general paradigm. Science system, legal system, and ethical system
are representative examples here. (3) An actual social, economic, or political organiza-
tional form. The establishment. (4) A naturally occurring group of objects or phenomena.
The solar system, a (specific) ecosystem, or a pack of wolfs are representative examples
here. (5) A set of objects or phenomena grouped together for the purpose of classification
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or analysis. All life forms in the ocean or all elementary particles in the Cosmos could
be representative examples here. (6) A method, a procedure, or a paradigm, which can
be systematically reused without changing details each time it is used. Number system
(such as binary or decimal), writing system (such as roman script), and cryptographic
system are representative examples here.

Systematics — The scientific study of the diversity of organisms via appropriate classification
and coding (naming). 

Tangent Space — The vector space of infinitesimal displacements at a point in a manifold. A
vector in this space can be defined as an equivalence class of paths that “go in the same
direction at the same speed.” A tangent vector specifies the rate at which any function
will change as we move in the direction of the tangent vector. If it is a coordinate system
at a point, then the partial differential operators form a basis for the tangent space and
thus define the corresponding coordinate system in the tangent space. 

Thermodynamics — A field of science devoted to studies of interconversions between different
forms of energy (such as for instance heat and work). 

Theory — (1a) Systematically organized knowledge applicable in a relatively wide variety of
circumstances, especially a system of assumptions, accepted principles, and rules of
procedure devised to analyze, predict, or otherwise explain the nature or behavior of a
specified set of phenomena. (1b) Such knowledge or such a system. [AHD-1] (2) Abstract
reasoning; speculation. [AHD-2] (3) A belief that guides action or assists comprehension
or judgment: rose early, on the theory that morning efforts are best; the modern archi-
tectural theory that less is more. [AHD-3] (4) An assumption based on limited information
or knowledge; a conjecture. [AHD-4] (5) A narrative describing a possible scenario (chain)
of events that could lead to a given outcome. (6) A pejorative term meant to characterize
outcomes of lunacy of an irresponsible thinker. Incomplete, second-hand opinions or
speculations not always relevant to the subject matter. The opposite of “practice.”

Turing machine — A Turing machine is an automaton, or a general mathematical model of
computation. As given by K. Rosen, in his classic reference on discrete mathematics:
“A Turing machine T = (S, I, f, s0) consists of a finite set S of states, an alphabet I
containing a blank symbol B, a partial function f from S × I to S × I × {R, L}, and a
starting state s0.” The Church–Turing thesis says that any process that can be described
by this automaton is “effective.” Von Neumann demonstrated that any process that could
be described unambiguously could also be described by this automaton. The advocates
of the Strong Church–Turing thesis believe that any physically realizable process can be
described by this automaton. (See also Church–Turing Thesis; Strong Church–Turing
Thesis.)

Upward causation — Upward causation is the notion that the properties of the whole are caused
as a cumulative effect of the properties of the parts. Until recently “traditional” science
did not admit the possibility of causation running in the other direction. The academic
tradition that advocates upward causation and forbids downward causation is called
causal reductionism. (See also Downward causation; Reductionism)

Vector — (1) An agent such as an insect that carries a pathogen affecting another species.
(2) An intermediary object (such as a plasmid or a virus) that carries an inserted piece
of DNA into a chromosomal DNA of a cell.

In mathematics (algebra), an element v of a vector space V over a field F. A one-
dimensional array. For a fixed natural number k, any sequence of k real (or complex)
numbers can be considered a vector in a k-dimensional vector space. In particular, a
sequence of three numbers can be considered a vector in three-dimensional space pro-
vided that the appropriate algebraic operations are defined.

In physics, a mathematical object characterized by magnitude and direction that can
be used to quantitatively represent properties of physical systems such as velocity or force.
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Working fluid — A thermodynamic system used as a temporary medium for storing heat and
work during a thermodynamic process, typically the operation of a heat engine. 

z-Value (z-Score) — The observed value of a Z statistic, which is constructed by standardizing
some other statistic. The Z statistic is related to the original statistic by measuring number
of standard deviation by which a given data point differs from expected value: Z =
(observed – expected value of original)/Standard Deviation (observed). 
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COLOR FIGURE 2.5

 

Examples of commonly used kinetic rate laws. Panels A, B, and C give the functional
form of the Michaelis–Menten, reversible Michaelis–Menten, and Hill rate laws and graphs of reaction rate
vs. substrate. The reversible Michaelis–Menten reaction schemes yield negative rates when 
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COLOR FIGURE 2.6

 

Examples of kinetic rate laws plotted in logarithmic coordinates. Nearly linear behavior
is often found over wide ranges of substrate concentration. Linear regions in logarithmic coordinates indicate
power law behavior in linear coordinates.
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COLOR FIGURE 2.7

 

Power law approximations to the Michaelis–Menten, reversible Michaelis–Menten,
and Hill rate laws. The power law approximation fits the given rate law exactly at the operating point and
typically provides a good approximation to the rate law about that point.

 

COLOR FIGURE 9.1

 

Plaster model of the equilibrium states of water constructed by James Clerk Maxwell
and sent as a present to Josiah Willard Gibbs. (

 



 

The Cavendish Laboratory, University of Cambridge.
Reproduced with permission.)
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